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ABSTRACT
We present joint estimation of F-formations and head, body
pose of interactors in a social scene captured by surveillance
cameras. Unlike prior works that have focused on (a) discov-
ering F-formations based on head pose and position cues, or
(b) jointly learned head and body pose of individuals based
on anatomic constraints, we exploit positional and pose cues
characterizing interactors and interactions to jointly infer
both (a) and (b). We show how the joint inference frame-
work benefits both F-formation and head, body pose esti-
mation accuracy via experiments on two social datasets.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human information pro-
cessing; I.5.4 [Pattern Recognition Applications]: Com-
puter vision

General Terms
Algorithms, Measurement, Human Factors

Keywords
F-formations; Head and Body Pose; Joint Estimation; Social
Scenes

1. INTRODUCTION
Following considerable research progress in the areas of

computer vision and multimodal analysis, examination of
complex phenomena such as social interactions is now pos-
sible. Social interactions are commonplace in our daily lives
and have been extensively studied by psychologists in a vari-
ety of contexts. Social interactions provide a wealth of infor-
mation concerning individual and group behavior, and while
most automated social interaction analysis methods have fo-
cused on round-table meetings [8], recent works have exam-
ined unstructured meeting scenes [11] (e.g., cocktail party)
involving free-standing conversational groups (FCGs). FCGs
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Figure 1: (Left) Social scene from the Cocktail-
Party dataset [11]. We jointly estimate F-formations
and the head, body pose of targets exploiting the
interation-interactor relationship in terms of posi-
tional and pose constraints. Red circles denote tar-
gets’ feet positions and O-space corresponding to the
F-formation is shown via the circular region connect-
ing target positions. (Right) Body pose of interac-
tors serves as our primary cue for determining the
O-space center and the corresponding F-formation.

naturally emerge in social settings, and individuals consti-
tuting an FCG are characterized by mutual scene locations
and head/body orientations resulting in distinct spatial pat-
terns known as F-formations.

F-formations (FFs) are primarily detected using visual
cues [4,9] and FF detection from a distant social scene cap-
tured by surveillance cameras is challenging as seen in Fig.1.
Fig.1 (left) shows an FCG comprising six targets– despite
being a small group, most targets are partially or severely
occluded and are captured at low-resolution, making head
and body pose estimation difficult. An F-formation is de-
fined via the O-space (Fig.1 (right)), which is the smallest
empty convex space encompassed by the interactors. The
body orientation of targets better defines the O-space geo-
metrically1 as compared to head pose which can frequently
change during conversations. Still, head pose is typically
used for FF detection [4,7,9] due to severe body occlusions.

We present the first work to exploit the social context
to jointly estimate targets’ head and body pose and F-
formations in a social scene. Prior pose estimation (PE)
works have jointly learned head and body pose of individu-
als based on anatomic constraints [2, 3], while FF detection
works have mainly used position and head pose cues [4, 9].
Differently, we exploit positional and pose constraints gov-
erning the synergetic interaction-interactor relationship in

1FF members typically orient their bodies towards the O-
space center.



social scenes to jointly infer both FFs and pose of targets.
Specifically, FFs are characterized by mutual locations and
head, body orientations of interactors, and conversely, in-
teractors are constrained in terms of the head and body
pose they can exhibit, motivating the need for joint learn-
ing. Our multimodal framework2 (i) exploits both annotated
and unlabeled examples to learn the range of possible joint
head-body orientations, (ii) employs positional and pose-
based constraints relating interactors to discover FFs, and
(iii) progressively refines pose estimates of interactors based
on the gained FF knowledge and vice-versa.

Contributions: (i) We present a multimodal framework
for jointly estimating targets’ head, body orientations and
F-formations in social scenes. We show the benefit of joint
learning via experiments on two social datasets. (ii) Differ-
ent from prior works, we primarily use body orientation for
estimating F-formations. Precise body pose estimates are
computed via coupled head-body pose learning, and knowl-
edge of F-formations.

2. SOCIAL SCENE ANALYSIS

Figure 2: Our social scene analysis framework.

Overview: An overview of our social scene analysis (SSA)
method is presented in Fig.2. Given the surveillance video
of a social gathering, we apply multi-target tracking to es-
timate the feet positions of targets in the scene. As in [10],
a 3-D head-plus-shoulder model is registered to each target
via shape matching with color information provided by the
tracker to output head coordinates. The body region is then
determined as the portion lying between the head and feet
coordinates. Head and body images are respectively nor-
malized to 20 × 20 and 80 × 60 pixels, and HoG features
are extracted over 4 × 4 cells, resulting in 775 and 2480-
dimensional head and body descriptors. These features and
target positions are input to our SSA algorithm to output
(a) head, body pose along with FF membership for each
target, and (b) O-space centroids for the detected FFs.

2.1 Joint pose and FF learning

Given a T -frame surveillance video of a social scene with
K persons (targets), we assume to have the head and body
crops for each target k at each frame t. In other words, for
each target k, we have a set of samples Sk = {xBk,t,xHk,t}Tt=1,

where xBk,t ∈ IRDB ,xHk,t ∈ IRDH are the head and body
HOG descriptors of dimensionality DB and DH respectively.
For each frame t, we also have the tracker-output ground
position for each target k, k = 1, . . . ,K, i.e., over the video
length, for each target k we have a set Pk = {pk,t}Tt=1 with
pk,t = (pxk,t, p

y
k,t) respectively denoting (x, y) feet positions.

2Even though our approach is vision-based, we employ mul-
tiple cues such as target positions, their head, body pose
and FF membership in our model.

In addition to social scene features, we also assume to
have training data from an (independent) annotated dataset,

TB = {(x̂Bi , yBi }NB
i=1, TH = {(x̂Hi , yHi }NH

i=1 , where x̂Bi ∈ IRDB ,
x̂Hi ∈ IRDH denote HOG body and head descriptors, while
yBi ∈ {0, 1}CB , yHi ∈ {0, 1}CH are the corresponding labels
(i.e., yBi = [0, 0, . . . , 1, . . . , 0], yHi = [0, 0, . . . , 1, . . . , 0] where
the position of the non-zero element indicates the class label
of the training sample). In this work, we quantize the set of
possible head and body pose directions into CH = CB = 8
possible classes, each denoting a 45o head/body pan range.

We define matrices XB
k ∈ IRDB×K = [xBk,1, . . . ,x

B
k,T ]

and XH
k ∈ IRDH×K = [xHk,1, . . . ,x

H
k,T ] obtained by con-

catenating head and body features for target k, and de-
fine global matrices XB ∈ IRDB×KT = [XB

1 , . . . ,X
B
K ] and

XH ∈ IRDH×KT = [XH
1 , . . . ,X

H
K ] collating features for

all targets. Similarly, the matrix P is defined as P =
[P1, . . .PT ], where Pt = [p1,t, . . . ,pK,t], i.e., P ∈ IR2×KT

contains feet positions of all targets over the video length.
We also consider matrices X̂B ∈ IRDB×NB = [x̂B1 , . . . , x̂

B
NB

]

and YB = [yB1 , . . . , y
B
NB

], obtained by concatenating head,
body features and corresponding labels from the annotated
data. Similarly, X̂H ∈ IRDH×NH = [x̂H1 , . . . , x̂

H
NH

] and

YH = [yH1 , . . . , y
H
NH

].
We propose a joint framework to infer the head and body

pose of all the targets in the social scene along with FFs.
More formally, we propose to jointly learn head and body
pose classifiers fH : DH → IRCH and fB : DB → IRCB , and
respectively parametrized by matrices ΘB ∈ IRCB×DB and
ΘH ∈ IRCH×DH , and indirectly infer F-formations based
on shared cluster memberships. We propose to solve the
following optimization problem:

min
ΘB ,ΘH ,ΘF

LΘB ,ΘH
(X̂B , X̂H ,YB ,YH) (1)

+λUUΘB ,ΘH
(XB ,XH) + λFFΘB ,ΘF

(XB ,P)

where ΘF denotes FF parameters. The objective function
is the sum of three terms. The first term L(·) leverages anno-
tated data to learn both the head and body pose classifiers.
Formally, we minimize the training error on labeled head and
body samples, while regularizing the classifiers to reflect the
distribution of the training examples. The second term U(·)
exploits unlabeled examples gathered from the social scene
to improve PE performance. The last term models the re-
lationship between targets’ body pose and FFs. Intuitively,
if the precise body orientation of interactors is known, F-
formations can be detected. Conversely, if FFs are known,
body pose of interactors can be enforced/refined. The pa-
rameters λU and λF regulates the importance of the three
terms. We now describe loss functions L(·), U(·) and F(·).

Training loss: The first term L(·) in Eq(1) implements
the traditional trade-off between minimization of the em-
pirical error on labeled data and regularization. More for-
mally, considering the head and body training data, we de-
fine L(·) = LH(·) + LB(·) and:

L4 = ‖Y4 −Θ4X̂4‖2 + λr‖Θ4‖2

+λg
∑

(i,j)∈G4

γ4ij ‖θ
ci
4 − θ

cj
4‖2

where 4 = {B,H}. The last term enforces that simi-
lar classifiers, corresponding to columns θci4 of the matrix
Θ4, are obtained for neighboring poses. This is achieved

by defining an appropriate pose graph G4 such that γ4ij = 1



if the classes ci and cj correspond to similar head/body ori-
entations. The parameters λg and λr regulate the trade-off
between loss and regularization.

Unsupervised loss: Since one would expect unlabeled
data from the social scene to be consistent with the distri-
bution of the labeled data (this is the assumption in semi-
supervised manifold learning), we propose to integrate un-
labeled data information by adopting a graph-based regu-
larization term as typically done in semi-supervised meth-
ods [12]. The assumption is that the manifold in which data
are embedded can be approximated by a weighted discrete
graph whose vertices are identified with (labeled and unla-
beled) training examples. The proposed unsupervised data
term U(·) in Eq(1) is defined as U(·) = UB(·)+UH(·)+UP (·),
where:

U4 = Θ′4L4Θ4

where 4 = {B,H} and L4 is the Laplacian matrix defined
as L4 ∈ IRM4×M4 , L4 = D4−A4, where D4 = diag(di),

i = 1, . . . ,M4, di =
∑M4
j=1 [A4]ij and M4 = N4 + KT is

the total number of labeled and unlabeled data. The M4×
M4 adjacency matrix A4 is defined such that [A4]ij =
1 if the i-th sample is one of the k-nearest neighbors of j
and zero otherwise. The term UP couples head and body
pose estimates on unlabeled data based on human anatomic
constraints (e.g., the body and head cannot be oppositely
oriented) and it is defined as follows:

UP =

K∑
k=1

T∑
t=1

‖fB(xBk,t)− f
H(xHk,t)‖

2 (2)

= ‖ΘHXH −ΘBXB‖2

F-formation loss: The third term in the objective func-
tion Eq(1) models the relationship between interactors’ body
pose and the F-formations. Our aim is to iteratively exploit
the targets’ FF membership for refining body pose estimates
as interactors tend to orient towards the O-space center, and
conversely, to detect FFs from the body pose of interactors.
We consider the interactions between pairs of targets and
compute at each frame t, the angle βtkq of the line connect-
ing targets q, k. We formulate FF detection as the prob-
lem of learning a set of parameters ΘF = {Ct,Zt}, where
zkt ∈ Zt ∈ IRK×K . At each frame t, we aim to learn both
Ct, the matrix of O-space centers and the FF membership
matrix Zt. To learn Ct,Zt, we define loss FP as follows:

FP =

T∑
t=1

‖P̂t −CtZt‖2 (3)

+γp

T∑
t=1

K∑
k,q=1

δtkq‖η
B
k,t − β

t
kq‖

2(zk,t)
T zq,t

and we minimize it imposing Ct,Zt ≥ 0. In (3), γp is
a user-defined parameter, zk,t denotes the k-th column of
the matrix Zt, δ

t
kq is an indicator function, i.e. δtkq =

I(‖pk,t − pq,t‖2 < τ) and τ is a user-defined threshold.
ηk,t denotes transformation from fB(xBk,t) to a real-valued
angle obtained by computing the weighted average vector∑CB/CH
i=1 ŷi ~nαi , where ~nαi is the unit vector corresponding

to αi. The proposed function FP (·) aims to jointly learn
the F-formation detection parameters and the body clas-
sifier ΘB . Intuitively, minimizing FP (·), we enforce that
targets belonging to the same FF (i.e., with same member-
ship zk,t) should have the body pose almost aligned with the
direction individuated by the angle βkq. On the other hand,
detection of FFs is influenced by the body pose of targets,

i.e., targets belong to the same FF if they are close-by, and
their body orientation is consistent with βkq.

Optimization: To solve the optimization problem (1),
we adopt an alternating optimization approach solving for
pose classifiers Θ4 having ΘF fixed, and solving with re-
spect to ΘF when the pose classifiers are known.

3. EXPERIMENTAL RESULTS

3.1 Datasets
We evaluate our framework on the CocktailParty (CP)

and CoffeeBreak (CB) social datasets. CocktailParty [11]
is a 30-minute video recording of a social event involving
six targets in a 30m2 room, and recorded using four syn-
chronized wall-mounted cameras. We only use images from
Camera 1 for analysis. Target positions are logged via a
tracker, while head and body orientations are manually as-
signed to one ofNC = 8 class labels denoting a quantized 45◦

head/body pan, while F-formation annotations are available
for every 75th frame. CoffeeBreak comprises a maximum
of 14 targets, organized in groups of 2-3 persons. Target po-
sitions are annotated using a tracker, while head and body
pose are assigned to one of eight classes. F-formations are
annotated for two sequences of lengths 45 and 75 frames re-
spectively. as auxiliary data, we used 1000 frames from the
DPOSE dataset [5] which contains head pose measurements,
while body pose is computed via walking direction as in [2].

3.2 Quantitative evaluation
Algorithm parameters for our method and other baselines

were tuned using a small validation set. To evaluate head,
body pose estimation (HBPE) accuracy, we use the mean
angular error (in degrees) as defined in [3]. F-formation
estimation (FFE) accuracy is evaluated using F1-score as
described in [4, 9]. Table 1 shows the average HBPE errors
on the CP, CB datasets. Maximum error of about 72o is ob-
tained for both when the objective function involves only the
training error (L), which is within two pose classes. Addi-
tionally incorporating unlabeled scene examples (L+U) and
coupling head and body pose learning (L+U+H/B) consid-
erably reduces HBPE error, while exploiting knowledge of
FFs (L+U+H/B+FF) further minimizes the error to pro-
duce the best performance. We compare our approach with
the state-of-the-art for joint HBPE [3]. Our algorithm per-
forms significantly better than [3] on both datasets as the
social context is taken into account, and other cues (e.g.,
velocity direction) are ineffective when targets are mostly
static and heavily occluded. FFE results are compared with
the state-of-the-art in Table 2. Specifically, we compare with
the linear Hough transform method (HVFF lin) [4], its non-
linear (HVFF ent) [6] and multi-scale extensions [7] (HVFF
ms). Evidently, we achieve the best performance on both
datasets as we primarily use body orientation for detecting
FFs, and refine body pose estimates via coupled HBPE.

3.3 Qualitative Results
Fig.3 presents some qualitative results with our algorithm.

Specifically, we show the inferred head and body pose for
each target along with the detected F-formations. First two
columns in Fig.3 present results on CP. Despite being a
small group, severe occlusions are observed for conversing
targets making HBPE challenging. Note that most of the



Figure 3: Qualitative results on the CP (Columns 1,2) and CB (Columns 3,4) datasets: Pies on the ground
located at targets’ feet positions denote body pose, while arrows denote head pose. FF members are shown
connected (Figure best viewed under zoom).

Table 1: Mean HBPE error with various cues.
CP CB

Method Head Body Head Body

L 67.3 71.4 68.3 72.6
L + U 61.3 64.7 59.8 62.3
L + U + H/B 58.9 61.6 55.3 59.6
L + U + H/B + FF 51.7 55.3 49.6 51.4
Chen et al. [3] 58.3 62.7 56.1 60.2

Table 2: FFE evaluation via precison (pre), recall
(rec) and F1-scores (F1).

CP CB
Method pre rec F1 pre rec F1

HVFF lin [4] 0.64 0.72 0.68 0.74 0.85 0.78
HVFF ent [6] 0.78 0.82 0.79 0.81 0.78 0.79
HVFF ms [7] 0.79 0.80 0.79 0.78 0.85 0.81

Our 0.79 0.82 0.82 0.82 0.84 0.83

head, body pose and FF estimates are still accurate, demon-
strating the effectiveness of our joint learning framework.
In column 1, the target coded in yellow is incorrectly left
out of the FF. Also, while HPE outputs for the green and
yellow targets are erroneous, their body pose is estimated
correctly. This is because we link FFs with the body pose
of interactors, and progressively refine both body pose and
FF estimates upon gaining knowledge of the other. All es-
timates are correct for the frame in column 2, including for
the singleton yellow target who moves away from the group.
Columns 3 and 4 show exemplar results on the CB dataset,
which also captures a densely crowded social gathering over
a large area. Here again, we notice that FF and body pose
estimates are generally more correct than targets’ head pose
estimates. Overall, these results demonstrate the effective-
ness of our approach for HBPE and FFE on challenging
social datasets.

4. CONCLUSION
Our multimodal social scene analysis framework exploits

positional and pose constraints relating interactors to im-
prove both HBPE and FFE accuracy for social scenes involv-
ing persistent and considerable occlusions. Different from
prior works, we employ body pose of interactors as the pri-
mary cue for determining F-formations, and progressively
refine both body pose and F-formation estimates via an al-
ternating optimization strategy. Nevertheless, difficulties in
studying small groups point to the extreme challenges posed
to vision-based tracking and pose estimation while dealing
with large groups– incorporating multi-sensory information
can help alleviate limitations of purely vision-based analy-
sis [1], and will be the focus of future work.
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