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Abstract—Long-Short-Term-Memory (LSTM) have been ex-
tensively used for time series forecasting in recent years due
to their ability of learning patterns over both long and short
periods of time. In this paper, this ability has been exploited
to learn the pattern of Global Positioning System (GPS)-based
Precipitable Water Vapor (PWV) measurements over a period of
4 hours. The trained model reported a root mean square error
(RMSE) of 0.098 millimeter for a forecasting of 5 minutes in the
future, and outperforms naive approach for a lead-time of upto
40 minutes. These RMSE values were computed over the whole
test set comprising of more than 1500 hours of recorded data.

I. INTRODUCTION

Over the recent years, GPS (Global Positioning System)-
based PWV (Precipitable Water Vapor) values have proved
very helpful in determining/forecasting rainfall events [1],
[2]. However, this shifts the focus of forecasting from rain-
fall events to the GPS-based PWV values. On a separate
note, Long Short-Term Memory (LSTM) have shown their
potential in catering the problems of time series forecasting
[3]. Utilizing this potential, an LSTM-based Deep Neural
Network (DNN) has been designed and trained in this paper 1

to successfully forecast GPS-based PWV values with high
accuracy.

II. GPS-BASED PWV MEASUREMENTS

A. PWV Dataset and Pre-processing

The PWV values are computed from the GPS measure-
ments. The GPS signals are usually affected by two primary
delays in the atmosphere – Zenith Hydrostatic Delay (ZHD)
and Zenith Wet Delay (ZWD). The ZWD delay occurs
owing to the water vapor content in the atmosphere. We
compute PWV fom the ZWD delays as follows:

(1)PWV = PI · ZWD

PI = [−sgn(La) · 1.7 · 10−5|La|hfac − 0.0001]

· cos 2π(DoY − 28)

365.25
+ 0.165− 1.7 · 10−5|La|1.65 + f,

(2)

where La refers to the latitude, DoY is day-of-year, the
value of hfac is 1.48 for stations in northern hemisphere and
1.25 for that belonging to southern hemisphere. We compute
f = −2.38 · 10−6H , where H is the station height, and the
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PWV-Forecasts-Using-LSTM.

ZWD values are processed for a tropical IGS GPS station,
ID: NTUS (1.30◦N, 103.68◦E).

A windowed dataset is required for training the LSTM-
based deep neural network for time-series. In this case, each
window is a continuous slice of PWV measurements for 4
hours straight (i.e. 48 consecutive readings). The output label
is the predicted value or the next consecutive reading in the
dataset (i.e. 49th consecutive reading following the values
considered for the corresponding input window). Presence of
multiple gaps (missing values in the raw data) has also been
considered while pre-processing the dataset. This ultimately
led to 90011 windows of consecutive readings. In other words,
this accounted for more than 7500 hours of PWV measurement
data. The first 80% of this pre-processed dataset was used for
training the network, while the remaining was used for testing
and reporting results.

B. Forecasting Methodology

An LSTM-based deep neural network (see Fig. 1) has been
trained for the task of predicting for a lead-time of 5 minutes
(i.e. immediate next step in series) given the past data of
consecutive 4 hours. Similar to the Recurrent Neural Network
Language Model (RNNLM) [4], the trained network is used
to forecast PWV values ahead in future.

Fig. 1: LSTM network model for PWV forecasting.

The model was compiled with Adam optimizer in Keras
using the default settings but with an especially designed
learning rate (lr) schedule (cf. Eq. 3). The schedule has
been determined by running various experiments with varying
learning rates in an attempt to minimize the loss. Further, for
robust regression, Huber loss was used as the training metric
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[5]. The model was trained for 150 epochs with a batch size
of 32 on the Google Colab framework using GPU.

lr =

{
10−4 × 10epoch/20, if lr < 10−2.

10−2, otherwise.
(3)

We observe that adding a constant bias of −0.62 to the
trained model reduces its error rate considerably. This value is
noted manually after training has been completed. The reason
for adding this bias is because the last layer of the network
is a simple feed-forward dense layer with 1 neuron and linear
activation. Hence, this bias is nothing but a minor modification
in one of the network’s weights itself which probably wasn’t
optimized properly during the training process.

III. RESULTS & DISCUSSIONS

The trained DNN model is benchmarked with two popular
baselines which are used for time-series forecasting, namely,
‘average method’ (where the average of considered past data
is predicted as the future value) and ‘naive method’ (where the
recent most past value is copied over as the predicted future
value). The LSTM-based DNN model is noted to perform
better than both the other baselines for a lead-time of up to
40 minutes.

Fig. 2: Comparison of DNN (LSTM) model predictions with
baselines (for 15 minutes in future).

From a qualitative perspective, the model can be noted to
capture the variations in the data fairly well. This notion can be
clearly seen in the figure 2 which was generated by providing
real data for 4 hours before 15 minutes of the plotted value.

To quantitatively analyze the results, Root Mean Square
Error (RMSE) has been calculated over the complete test set
for various lead-times. The results shown in Fig. 3 that the
trained DNN model performs better than both baselines up
to a lead-time of 40 minutes. Moreover, with an increment in
lead-time, the RMSE for DNN model also increases indicating
that the error magnifies on each iteration. This is a likely
possibility, as the future readings for larger lead-times were
calculated using the approach of RNNLMs where the newly
predicted value is assumed to be the actual value for future
predictions.

Fig. 3: RMSE values for the DNN model and baselines over
a range of lead-times (5-60 minutes).

Although, the performance of the trained DNN model is not
very good for larger lead-times, the network demonstrates high
accuracy at short-term forecasting. Table I shows the obtained
RMSE values, averaged over the entire test set (more than
1500 hours of recorded data), for varying lead times.

TABLE I: RMSE (mm) for different methods & lead-times

Lead-time DNN Model Naive Method Average Method
5 min 0.0978 0.1330 1.4212

10 min 0.1966 0.2581 1.4532
15 min 0.3005 0.3704 1.4854

IV. CONCLUSION & FUTURE WORK

This paper presents an LSTM-based deep neural network for
forecasting the future PWV values. We obtain good forecasting
accuracy using our proposed framework as compared to other
benchmarking methods. In the future, we intend to benchmark
our LSTM-based network with other benchmarking meth-
ods [6], use longer time-period for statistical analysis, and
include other sensor data [7] for better prediction.
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