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Abstract. A novel approach to the computation of an approximate estimate of
spatial object pose from camera images is proposed. The method is based on a
neural network that generates pose hypotheses in real time, which can be refined
by registration or tracking systems. A modification ofKohonen’s self-organizing
feature mapis systematically trained with computer generated object views such
that it responds to a preprocessed image with one or more sets of object orienta-
tion parameters. The key concepts proposed are representations of spatial orienta-
tion that result in continuous distance measures, and the choice of a fixed network
topology that is best suited to the representation of 3-D orientation. Experimen-
tal results from both simulated and real images demonstrate that a pose estimate
within the accuracy requirements can be found in more than 90% of all cases.
The current implementation operates at near frame rate on real world images.

1 Introduction

Estimating the three-dimensional position and orientation of known objects from cam-
era images is an important sensory skill of intelligent robots, with applications such as
online path or task planning, world model update and visual servoing. However, model-
based pose estimation requires to explicitly or implicitly solve the extremely difficult
correspondence problem of relating image features to corresponding features in the
model description. The difficulty is mainly due to the large number of topologically
distinct aspects that arise when opaque 3-D objects are imaged by a camera. There-
fore, solutions that solve for correspondences analytically fail to achieve the real-time
performance necessary in many applications. On the other hand, there exist efficient
feature-based numerical registration algorithms [3, 11] that can iteratively refine an ini-
tial estimate of the object’s pose. This estimate need not be very accurate, it must only
lie within the range of convergenceof the subsequent numerical procedure. Typically,
deviations of about�25� in each rotational degree of freedom and up to20% of the
object size in translation can be compensated for [11].

As it is still very hard to find even an approximate pose solution analytically, a
learning approach seems more appropriate. The basic idea is to systematically train a
classifier with different object views such that it responds to a pictorial input pattern
with the approximate orientation parameters of the presented view. As a large number
of sample views may be necessary, training should be done entirely on images that
can be automatically generated from a CAD-like object model, rather than requiring
an operator to present a large set of images with ground truth to the system. Since an
analytical model of the mapping to be learned (i.e. the inverse camera projection) is not
available, a neural network-based approach appears most suitable. As spatial translation
can usually be determined easily once the object attitude has been found, we will focus
on recovering object orientation only.
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2 Previous Research

Most approaches reported in the literature simplify the task by either limiting the range
of admissible object orientations, by ignoring self-occlusion, or by assuming that cor-
respondences between image and model features are known. Furthermore, hardly any
results on real image data have been reported, most methods have only been validated
on computer generated images.

Poggio and Edelman [7] as well as Maggioni and Wirtz [5] both use an ordered
vector of object vertex coordinates as input to their respective networks. This input rep-
resentation poses the difficult correspondence problem of relating vertices of an input
image to the vertices of the training set. Furthermore, inevitable self-occlusion is not
considered at all.

Park and Cannon [6] explicitly address these problems. Hidden lines are removed
in their sample views, and a parametric contour description is used as input. Thus the
correspondence problem is reduced to the unique determination of the starting point of
the parameterization, which, however, turns out to be quite unrobust in practice.

Kothanzad and Liou [2] as well as Lu et al. [4] avoid such correspondence prob-
lems by working with moment invariants derived form a contour representation of the
image. However, the extraction of closed object contours from noisy images taken in
unfavorable illumination conditions is difficult, and artifacts are likely to occur.

A purely pictorial input representation that does not require any feature extraction
is more robust in practice. Ritter [8] uses such a representation for a pose estimation
network. The network architecture is a local linear map, an extension of Kohonen’s
self-organizing feature map, with a cubical topology of only2�2�2 neurons. The input
vector to the network is a heavily subsampled version of the gradient filtered input
image. The response of the network are the three angles of rotation about the object’s
principal axes. Despite the low input resolution and the small network, an average error
of 5� is achieved if the range of object rotation is limited to90� about each axis.

3 Neural Network Design and Pose Representation

In order to make a neural network based solution to the pose estimation problem viable
for practical applications, the following requirements should be met:

– An explicit solution of difficult correspondence problems should be avoided. For
instance, a feature vector composed of the object’s vertices necessitates relating
each of the vertices derived from the image at hand with the corresponding vertices
in the training set.

– The network should be designed such that it can be trained on computer generated
images. As the space of possible object orientation may have to be densely sampled
during training, it is quite cumbersome to provide a complete set of real camera
images along with the precise orientation parameters.

– Given a single input image, the network should simultaneously provide several
pose hypotheses together with some quality measure. These hypotheses can then
be either verified or rejected by the subsequent registration procedure.

The first two points favor a pictorial input representation such as the one proposed
in [8]. An additional advantage of representing the input by a filtered and subsampled
version of the original image is that such a representation exhibits graceful degradation
in the presence of noise and varying illumination.

3.1 The Rigid Map

The competitive learning approach usually employed to train feature maps determines
a winning nodew based on the weight vectorww that best matches the input pat-
tern ŵ. The winning node and its neighbors are then adapted to the input according
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w
; p̂) � �(p

i
; p̂) 8i

Weight update �wi = �(p
w
;p

i
; t) � �(t) � (ŵ�wi)
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Table 1.Comparison of the self-organizing map and the rigid map.� denotes the distance measure
between poses,� is the learning rate. The neighborhood function� ensures that the nodes are
updated in proportion to their distance from the current winnerw.

to Kohonen’s neighborhood rule (table 1). Depending on the measure defined to com-
pute distances between neighboring nodes, neurons tend to get placed according to the
topology of the input space. This property is generally known asself-organization.

In the pose estimation problem, each neuron represents a point in an inherently
three-dimensional orientation space. For a given parameterization of rotation, the opti-
mal network topology is known in advance. If a uniform distribution of neurons in this
space can be determined in advance (see below), self-organization of the network is not
necessary for pose estimation, and the training algorithm can be modified such that an
a-priori defined topology is preserved during training. This leads to the concept of the
rigid map [10].

The network topology is chosen such that the neurons are uniformly distributed in
rotation space. During training, the winner isnotselected according to the similarity of
input and weight vectors, but based on the proximity of a neuron to the object orienta-
tion p̂ presented with the training sample. Only the weight vectorswi of the winning
node and its neighbors are adapted according to Kohonen’s rule. This procedure keeps
the neuron topology fixed, hence the term rigid map. For pose estimation after training
the winnerw is of course determined based on the similarity of input and weight vec-
tors. The orientation parameters stored in the best-matching node,p

w
, then represent

the response of the network. Table 1 summarizes the rules for each type of map.
Unfortunately, Ritter’s approach cannot be extended to wider ranges in a straight-

forward fashion: For ranges greater than90�, the network fails to self-organize even if
the number of neurons is increased [10]. Two major reasons have been found for this
problem:

– Roll-pitch-yaw angles that represent spatial orientation exhibit a variety of disconti-
nuities and ambiguous configurations which violate the implicit continuity assump-
tions of the learning algorithm.

– A cubical network topology does not reflect global neighborhood relations in 3-D
orientation space very well.

With the rigid map in mind, a better suited representation of spatial orientation
should therefore meet the following requirements:

– The representation should be unique and not exhibit any discontinuities.
– A distance metric must be available that accurately reflects neighborhood relations

in orientation space.
– An algorithm must be available to uniformly distribute nodes in the particular ori-

entation space.

The following two sections introduce such representations together with the pertinent
network topologies.
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Fig. 1.Extended spherical coordi-
nates consist of a viewing vector
v and a rotation' aboutv.

Fig. 2. A uniform node distribution in spherical coordi-
nates can be derived from an 320-patch Gaussian sphere
(left). The corresponding node arrangement is shown on
the right (only a subset of the nodes is visualized).

3.2 Extended Spherical Coordinates

In order to represent all possible rotations of an object, spherical coordinates with lon-
gitude and latitude need to be extended by a third angle describing the rotation of the
camera about its own axis, the line of sight (figure 1). Hence, an orientation is repre-
sented by a unit vectorv and an angle'. This representation reduces the ambiguities
of the roll-pitch-yaw representation to only two points, namely the poles of the sphere.
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In order to distribute a certain number of nodes as uniformly as possible in orien-
tation space, a uniform tessellation of the unit sphere is needed, which can be obtained
from regular polyhedra. In order to achieve a finer resolution, the triangular faces of the
icosahedron can be recursively subdivided into four new triangles whose vertices are
projected onto the sphere. This leads to the well-known triangulation of the Gaussian
sphere, which ensures a quasi-uniform tessellation (cf. figure 2).

In order to allow for a greater flexibility with the number of nodes, the centers of
the faces at each level of subdivision can be combined with the vertices. At the lowest
level, this is the combination of the icosahedron and the dodecahedron, for example,
yielding 32 points, with the nearest neighbors37:4� apart. For a similar quantization
of the third dimension describing the rotation' about the line of sight, 10 nodes (36�

apart) are necessary at each of the 32 points, producing a network with a total of 320
nodes.

3.3 Unit Quaternions

Extended spherical coordinates still exhibit ambiguities at the poles of the viewing
sphere. However, the set of spatial rotations also fits into the algebraic structure of
quaternions [9]. A rotation by the angle' about the unit vectoru can be represented
by a unit quaternionq = [cos'=2; u sin'=2].

The main advantage of unit quaternions over extended spherical coordinates is
the removal of ambiguities at the poles. Furthermore, distance calculations are more
straightforward, because the three parameters are no longer contained in two separate
sets. The only difficulty relevant for our application that remains is an ambiguity be-
tween a rotation about the axisu by the angle' and a rotation about�u by �'; the
corresponding quaternions are antipodes on the 3-sphere. This problem can be circum-
vented by restricting all quaternions to one hemisphere.



Fig. 3.Left: Training image of a tape dispenser generated from the object’s wire-frame model, and
the training pattern obtained by subsampling. Right: Sobel filtered camera image and correspond-
ing input pattern. Even though simulated and real image differ significantly due to unfavorable
illumination conditions and object colors, a correct pose estimate can be obtained for the view on
the right.
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Thus the maximum distance between two nodes is�max = �=2 or 90�.
For the quaternion representation, the neurons must be distributed evenly on the

unit 3-sphere in 4-space. Since good solutions to the related problem in the three-
dimensional case were obtained from regular polyhedra, theirn-dimensional equiva-
lents, called regularpolytopes, can serve the same purpose [1]. Of the six regular poly-
topes in 4-space, we combine the two with the largest numbers of vertices to obtain a
quasi-regular distribution of 720 points on the 3-sphere. Because antipodes represent
equivalent orientations, only the points in the upper hemisphere are considered, the
other half is ignored. This restriction leaves 360 nodes for the network used in our ex-
periments [10] The minimum distance between neighboring nodes in this arrangement
is approximately15:5� in the quaternion measure.

4 Implementation and Experimental Results

Figure 3 shows the results of image preprocessing for both simulated and real images.
A training image is generated by projecting a 3-D wire-frame model of the object in
a randomly chosen pose. Hidden lines are removed to account for self-occlusion. The
resulting image is subsampled within its bounding rectangle to a target resolution of8�8
pixels. Although perspective projection is not invariant with respect to spatial transla-
tion, the subsampling step eliminates most of its effects, because visibility changes due
to translation are rather small within a reasonable working area (see also [10]). Finally
the resulting 64-element input vector is normalized to reduce intensity dependence. An
input intensity image is Sobel-filtered with a7�7 Gaussian derivative kernel and sub-
sampled in the same way as the training images. All preprocessing steps can easily
be implemented on standard image processors such as a Datacube MV200, which was
used in the experiments reported here.

4.1 Simulation Results

In order to quantitatively compare different pose representations and network topolo-
gies, an extensive series of experiments was conducted. Figure 4 summarizes the re-
sults. The plots show the error histograms generated from classifying 100,000 randomly
generated test views. Our benchmark object is the tape dispenser of figure 3. Training
with 50,000 views takes about 15 minutes on a standard SGI Indigo2 workstation for
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Fig. 5.Average estimation error versus the res-
olution of the subsampled image (resolution =
n�n) for 0, 2 and 4 gradient filter orientations.
Comparing input vectors of the same dimen-
sion (e.g. 1 orientation at8�8 pixels and 4 ori-
entations at4�4), the errors are slightly lower
for oriented-edge filtered images.

both network types. The pose estimation error is defined as the unit quaternion distance
based on equation 2, converted to degrees. The maximum of each histogram is located
at about8�, which roughly corresponds to half the sampling interval in rotation space.
Ideally this should be the only maximum of the curve, but we find significant tails at
about90� of error. There are two major sources for these error tails: The first are sym-
metries of the object, which cannot be resolved from a single camera image. The second
are the poles in the extended spherical coordinate representation. However, both of the
proposed network architectures successfully solve the pose estimation task even if the
range of admissible orientation is unrestricted.

One conclusion that can be drawn from fig-representation e � 15� e � 25�

roll-pitch-yaw 20% 24%
spherical coords. 65% 74%
quaternions 73% 81%
3 hypotheses 85% 92%

Table 2.Estimation error quantiles

ure 4 is that the performance of the quaternion-
based network is better than that of spherical
coordinate network. For reference purposes we
have also included the error histogram for the
three highest network responses, from which we
manually chose the best. The application in mind
is a hypothesize-and-verify paradigm, where a
small number of pose hypotheses is tested for

correctness such that symmetries may be resolved. In this case, the tail in the error
distribution nearly disappears, indicating that the errors of the quaternion network are
mainly due to the symmetries of the object.

Table 2 gives some cumulative statistics. For the quaternion-based network, the ori-
entation estimation error is less than25� in 81% of all cases, which is usually accurate
enough to ensure convergence of numerical registration procedures [11].

The reduction of the input dimension by subsampling leads to a tremendous loss of
information. In particular, the direction of short edges that come to lie within a single
subsampling block is lost completely. In order to circumvent this, oriented edge filtering
can be employed to emphasize certain angles of the gradient and suppress others by
multiplying the gradient image with Gaussian functions centered at the desired angles.
This gives a set of image feature vectors, each representing image edges at a certain
orientation. The results reported in figure 5 were obtained with oriented-edge filtering
at steps of both90� and45�, corresponding to 2 or 4 sets of feature vectors, respectively.
For a fair assessment, the classification results for equal input dimension should be
compared. Two conclusions can be drawn from figure 5: A higher resolution of the
subsampled image can increase the estimation accuracy only up to a certain point, and
oriented-edge filtering yields only minor improvements for higher resolutions.



Further experiments have demonstrated the robustness of the network with respect
to typical image artefacts. Estimation accuracy is degrades gracefully with noise in
both edge localization and intensity. Another typical variation with images obtained by
perspective projection is the abrupt appearance or disappearance of lines (and surfaces)
when the object is translated with respect to the camera, e.g. when images are recorded
at varying distances. This is one of the major problems of multi-view representations.
Our experiments have shown that a neural network trained with views taken from a
fixed distance is robust to such changes of aspect within a reasonable working range.

4.2 Real Data Results

Figure 6 shows the application of the quaternion net to some real images. A bounding
rectangle of the object is determined by color segmentation (the object colors being red
and light blue). The gradient filtered intensity image within the bounding rectangle is
then subsampled, and the resulting 64-element feature vector is normalized and pre-
sented to the quaternion map (figure 3). In this example the network consists of 360
nodes and has been entirely trained on synthetically generated views.

In order to visualize the pose estimate, the model wire-frame is placed at the pose
relative to the camera that is represented by the winning node. The resulting pose is also
passed as an initial pose estimate to the registration algorithm described in [11], which
refines the network’s estimation. The algorithm extracts edge segments from the raw
pixel data and computes the pose by iterative matching of image and model edges. The
resulting pose is shown in figure 6 on the right. It takes less than a millisecond to com-
pute the network response on an SGI Indigo2 workstation, while image preprocessing
accounts for about 20 msec on a384�287 image.

Considering the significant difference between the simulated training data and the
test input computed from images (cf. figure 3), the network performance on real images
is surprisingly good. The error rates are of course somewhat higher than those obtained
with simulated test samples, which were reported in the previous section. As it is quite
cumbersome to generate a large real image test set with precise ground truth, we cannot
report any statistically significant results here. However, from the experiments con-
ducted, we found that in more than 70% of all cases the quaternion network yielded a
pose estimate for our benchmark object that was within the range of convergence of the
registration algorithm. The main reason for such a degradation is illumination, as the
contrast of an image edge strongly depends on the number and position of light sources.
However, as long as most the of the edges in the trained image can also be extracted
from the image data, pose estimation usually succeeds.

5 Conclusions and Future Directions

We have presented a feature map approach to the problem of obtaining 3-D pose esti-
mates from single 2-D perspective views. Experiments have shown that a network based
on the unit quaternion representation is best suited for this task. The feature map’s topol-
ogy is tailored to this representation of spatial orientation and is kept fixed during train-
ing. Training is done entirely on synthetic views generated from a CAD-like 3-D object
model, which makes the training phase fully automatic and efficient. Once trained, the
network can successfully classify real images. The online computation is very fast, and
frame-rate implementations with image processors are easily feasible.

Future research aims at both theoretical and practical aspects. In order to include
the effects of illumination, training on synthetic images should only be done to get an
initial set of neural weights that are adapted to a given setup by online retraining with
real data. An interesting theoretical problem is to adapt the interpolation scheme of
Ritter’s local linear map to the topology of the quaternion net. This should significantly
increase the accuracy of the pose estimate.



Fig. 6. Left: Real camera images of a tape dispenser with the wire-frame model projected from
the view determined by the quaternion network. Image processing and evaluation is confined to
the object’s bounding rectangle, which is determined by color segmentation. Right: Result of
applying the registration method described in [11] to edge segments extracted from the image
with the initial pose shown on the left.
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