
Multiplayer First Person Shooting Game with Tangible
and Physical Interaction

Zhou Zhiying
National University of

Singapore
Department of Electrical and

Computer Engineering
Interactive Digital Media Lab

elezzy@nus.edu.sg

Jefry Tedjokusumo
National University of

Singapore
Department of Electrical and

Computer Engineering
Interactive Digital Media Lab

elejt@nus.edu.sg

Stefan Winkler
National University of

Singapore
Department of Electrical and

Computer Engineering
Interactive Digital Media Lab

elews@nus.edu.sg

ABSTRACT
In this paper, we present a new application of the first person
shooting (FPS) game. Currently the multiplayer FPS games in
the market use keyboard and mouse to interact with the virtual
world. This method is not intuitive and lacks physical
interaction between the players. Our system provides an
intuitive way to interacts with the virtual world, the user moves
and aims freely as they are in the real world. This encourages
more physical interaction between the players as they are
competing or collaborating with each other.

Categories and Subject Descriptors
H.4 Information Systems Application: Miscellaneous; H.5.1
Multimedia Information Systems: Artificial, augmented, and
virtual realities; H.5.2 User Interfaces: Input devices and
strategies

General Terms
Design, Human Factors.

Keywords
First Person Shooting, Virtual Reality, Augmented Reality,
Physical Interaction, Tangible User Interface.

1. INTRODUCTION
First Person Shooting game is a popular computer game genre.
The game required high level accuracy of aiming, which
currently is provided by mouse [1]. This traditional method
lacks physical and social interaction.

In this paper we present a new application of multiplayer FPS
game. In our system, the players wear head tracking, Head
Mounted Display (HMD), and wand tracking (see Figure 1).
With these tracking devices we change the way multiplayer
FPS games are played. The player’s view orientation and
position tracked by the head tracker. His hand holds a wand
tracking device. This wand’s orientation corresponds to the gun
aiming orientation in the game. In our system it is possible for
the player to shoot backward, even though his head facing

forward. To make this feasible, we give a small screen showing
the gun point of view in the player’s eye view (see Figure 3).

Figure 1. The Game Environment.

The game is situated in a rectangular room with no obstacle in
it (see Figure 1). We place game items (health, armor, weapon,
bullets) in the corners of the room. The player must go to this
location to get these items. The game style is “death match”,
which means the players shoot to each other until his
opponent’s health reach zero. The winner is the one who kills
the most. The game style can be easily changed to support more
players so it has collaboration component i.e. the battle between
two groups. However this is subject to the availability of
trackers.

Our system gives new perspective of how multiplayer FPS
games are played. It provides tangible and physical interactions
among users both collaboratively and competitively.

In section 2 we introduce previous work on FPS games. Section
3 describes our system set up. Section 4 discusses the
implementation of our system. Finally in section 5 we conclude
our paper, and discuss some of the possible future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

2. RELATED WORK
CAVE QUAKE [3] was built by Paul Radjlich in 1997. It had
done a very good job in delivering tangible user interface for
FPS. CAVE is a 10x10x10 foot "cube" with images projected
onto 3 walls and the floor. The player stands in the middle of Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Table 1. Our System compared to others

System Name Weapon Aiming
Method

Virtual
Character’s
Movement

Accuracy
Ability to Shoot

Outside the View
Range

Physical
Interaction

between Players
CAVEQUAKE Hand Joystick High None None

CAVEUT Hand Joystick High None None

ARQUAKE Head Player’s Movement Low None None

ChairIO + Gun Hand Tilting the chair High None None

Game Runner Handlebar Treadmill High None None

Human Pacman Not Applicable Player’s Movement Low Not Applicable Yes

Touch Space Hand Player’s Movement High None Yes

Our System Hand Player’s Movement High Yes Yes

the cube and the CAVE renders the virtual world in front, left,
right, and bottom of the player. The player aims the gun using
his hand as it is in the real world. The player usually uses
joystick to move around in the virtual world. CaveUT [5] uses
the same idea. The difference is in the system cost. CaveUT is
built using low-priced hardware equipments (around US$
25.000) compared to CAVE Quake which was built using
million dollars equipments. Our system differs in the way that
the graphics are presented. Instead of using projection on walls
that doesn’t allow update of viewpoints when user moves his
head, we attach a camera to the HMD so that the user can
always receive updated first-person views whenever he moves.

ARQUAKE [2] is a single player mixed reality FPS. The player
in ARQUAKE has freedom to move around the world, but the
gun aiming is limited to the center of the view of the Head
Mounted Display (HMD), this means the gun aiming is done by
player’s head rather than player’s hand. This is unintuitive and
it is difficult to aim accurately using our head while we are
evading our enemies. The game was initially designed as a
single player game, so it has no interactivity with other human
player. Though this game can be extended to support multi
players, the tracking systems that they use (GPS and markers)
are meant for outdoor application. Therefore, ARQUAKE may
have accuracy problems to determine whether a bullet shot
from one player has actually hit another player. Human Pacman
[7] is another example of outdoor augmented reality game.
However, as it is also using GPS for tracking, it suffers the
same accuracy problem as ARQUAKE. Our system (IS900) is
an indoor system with accuracy of position 2mm - 3mm,
orientation 0.25o - 0.4o – which is sufficient for FPS games.

Touch-Space [8] is an indoor mixed reality game that is situated
and carried in a room-size space, using high accuracy ultrasonic
tracking system from intersense which is similar to ours. It has
3 stages: physical land exploration, virtual land exploration, and
virtual castle exploration. The stages ranged from augmented
reality to virtual reality. Our system differs from Touch Space
in the following aspects. First, we add in more physical
interaction components, for example, collecting armors by
moving close to virtual armor boxes, jumping up to avoid
bullets. Second, we implement a popular FPS game which
involves intensive competitions between users, while the tasks
in Touch-Space require collaborations.

In 2005 Beckhaus, et al. [1] propose a new device to control a
FPS game. The device consists of a ChairIO and a Game Gun.
The ChairIO basically is a chair that tilts. The tilt is used to
control the movement of the virtual character in the game
(forward, backward, left, and right). The ChairIO also support
jumping (by bouncing from the chair). However, the user is
constrained to be sitting on the chair hence physical movements
are very limited. Our system offers free body movements by
using wireless trackers. User can move freely within the room
and even jump to avoid bullets. In Beckhaus’s work, the gun
aiming is done by the Game Gun which is also limited to the
center of the screen; this means the game view will always
follow the gun’s orientation. Similar game controller concept is
used in GameRunner [4]. However, in physical life, user’s
viewpoint is absolutely not always following the gun post. Our
solution of separating the views offers a new approach of
developing FPS games.

Table 1 summarizes the comparison between our system and
the others. Our system gives intuitive and tangible controller in
the virtual world and at the same time maintains
collaborative/competitive physical interaction between the
players. Our system novelty is on the ability to aim and shoot
other players outside the virtual character’s eye view.

3. SYSTEM

Tracking System

Head Tracker
P1

Hand Tracker
P1

Head Tracker
P2

Hand Tracker
P2

Tracking
Server

IP
Network

Tracking Sensors

Tracking
Client P2

Tracking
Client P1

Figure 2. The Tracking System Diagram.

(a) (b)

 Figure 3. Game’s screenshots and the player

Our game system consists of game engine and a tracking
system (InterSense IS900). We implement the system with 2
players (four trackers), as each player needs 2 tracking devices
(1 head tracker, and 1 wand tracker). IS900 is an ultrasonic
tracking system. It has high degree of accuracy (2mm - 3mm
for position and 0.25o - 0.4o for orientation), but it has limited
coverage. We can easily extend the coverage by putting more
sensors on the ceiling. The tracking system is built in a room of
2 meter width, 4 meter length, and 2.4 meter height (see Figure
1). The tracking system is connected to a computer, we call it
tracking server. The tracking server will send UDP packets
which contain tracking data (position and orientation) to the
tracking clients at rate 90 Hz (see Figure 2).
The head tracker is mounted together with the Head Mounted
Display (HMD) to track the player’s position and orientation.
The game engine will render the virtual environment based on
this information. The wand tracker acts as a gun. The wand
tracker is used by the player to aim the weapon in game. The
player’s HMD will display the image like that is shown in
Figure 3. The small window in the bottom right is the gun radar
that represents the gun’s point of view. With this gun radar, the
player can aim and shoot to any direction inside or outside his
eye view. This adds an element of excitement. The player can
aim and shoot the enemy at your back. The white square dot in

Figure 3 is the weapon’s pointer. The weapon’s pointer is very
useful to help the player to aim accurately.
For the game engine, we use cube engine [6]. This game engine
is an open source program written in C++, so we can easily
modify it. The engine also has a built in world editor and it
supports .md2 models. The game engine itself consists of two
parts. One is the server and the other is the client, the game
engine supports multiple clients. In our implementation we will
use one server and two clients. Each client will do the rendering
and sends the result into the player’s HMD. The server only
receives the information of the client’s position, orientation,
and action. Then the server broadcasts the information to all
other clients (see Figure 4).

Game
Server

IP
Network

Game
Client 1

Game
Client 2

Player 1’s
HMD

Player 2’s
HMD

Figure 4. The Game System Diagram.

4. IMPLEMENTATION
This section will discuss major issues on the implementation.
We have made some modification in the game engine to
support our main features

4.1 Calibration
The first step to integrate the tracking system and the game
engine is calibration. Figure 5 (a) shows the orientation of the
tracking system (where the players are moving in real world),
Figure 5 (b) shows the axis orientation of the wand tracker, and
Figure 5 (c) shows the axis orientation of the game engine
(where the virtual character moves in virtual world). The game
engine defines yaw as rotation around z axis, pitch as rotation
around y axis, and roll as rotation around x axis.
We calibrate the hand tracker to give yaw, pitch, and roll value
of 0 to the game engine when the hand’s and the tracking
system’s axis align as in Figure 5 (a) and 5 (b). The z axis in the
real world is the inverse to z axis in the virtual world (see
Figure 5 (a) and 5 (c)). This makes the yaw value that we track
in the real world is the inverse of the yaw value in the virtual
world (i.e. different in the ± sign).

Figure 5. Axis Orientation.

Calibrating the position is simple. Because the x axis and y axis
of the real world and the virtual world are aligned. We only
need to adjust the scaling.

4.2 Modifying Weapon’s Orientation
Like most of the game engine, cube engine weapon’s
orientation is pointing to the center of the screen and it is tied to
the player’s eye view. To make the weapon’s orientation
independent of the player’s eye view, we add new variables:
yaw, pitch, and roll for the weapon. We render the weapon’s
orientation according to the data that we get from the wand
tracker. In Figure 3 (a) the player orients the wand tracker
upward, and you can see in the player’s HMD, the gun is
pointing upward. In Figure 3 (b), the player orients the wand
tracker to the right, and the HMD shows that the gun is pointing
to left.

4.3 Gun Radar
Gun Radar (a small window that gives the weapon’s point of
view) is one of the important features. This radar makes our
system possible to aim and shoot at arbitrary direction (even if
it is out of the player’s eye view). To render this Gun Radar we
make a new view port. In this view port we align the player’s
position and orientation to the gun’s position and orientation.
Then we render the virtual world in the view port. After that we
restore back the orientation and the position of the player. Note
that the center view of the gun radar becomes the target point.

4.4 Weapon’s Pointer
Weapon’s pointer is designed like a laser pointer. It shows the
position where the bullet will hit the target. This feature makes
the aiming in the virtual word easy. This feature is dependent

on the gun radar. We need the z value of the pixel in the center
of the Gun Radar (the target point). The z value can be taken
from the z buffer. After we get the z value, we have the x, y,
and z coordinate of the target point in the frustum. We multiply
this point with the inverse projection matrix, to get the target
point in the game engine’s world coordinate. We draw a
transparent red square to mark that this area is pointed by the
weapon. In Figure 3 we draw it as white square to make it clear.

4.5 Jumping
We implement an interface, such that if the player jumps in the
real word, the virtual character in the virtual world will also
jump. We detect the delta z from the head tracker, if the delta is
greater than certain threshold. We assume that the player is
jumping. This feature can be useful to evade from the enemy
bullets. This feature makes the physical movement substantial.
Figure 6 shows how the player jump, and how his jumping
affects the virtual character.

(a)
Real World

(b)
Tracker

(c)
Virtual World

Figure 6. Jumping

5. CONCLUSION AND FUTURE WORK
We have successfully built a system for FPS game using
ultrasonic tracking system. The system encourages the tangible
and physical interactions between players, especially in a tense
competition situation. We use a novel way to present the user’s
viewpoint and the gun’s viewpoint. It allows user to move
freely inside the room while aiming at targets using a gun-like
handheld device. Jumping is also tracked so that the user has
more options to avoid the bullets. This is novel and also very
entertaining. As this is an ongoing project, as we wrote this
paper we haven’t got the customized HMD with tracker and
camera yet. Later on when we have full system setup, we will
continue our work with the user studies of players’ experience
during the gameplay.

6. REFERENCES
[1] Beckhaus, S., Blom, K. J., and Haringer, M. A New

Gaming Device and Interaction Method for a First-
Person-Shooter. University of Hamburg, 2005

[2] Thomas, B., B. Close, J. Donoghue, J. Squires, P. De
Bondi, and W. Piekarski, First person indoor/outdoor
augmented reality application: ARQuake. Personal and
Ubiquitous Computing, 2002. 6(2): p. 75-86

[3] Rajlich, P. CAVE QUAKE.
http://brighton.ncsa.uiuc.edu/~prajlich/caveQuake/

[4] GameRunner. http://www.fpgamerunner.com/index.php

[5] Jacobson, J., Lewis, M. "Game Engine Virtual Reality
with CaveUT," Computer, vol. 38, no. 4, pp. 79-82,
Apr., 2005.

[6] Oortmerssen, W. http://www.cubeengine.com/
[7] Cheok, A. D., S. W. Fong, K. H. Goh, X. Yang, W. Liu,

Farbiz, F. Human Pacman: A Sensing-based Mobile
Entertainment System with Ubiquitous Computing and
Tangible Interaction. In 2nd Workshop on Network and
System Support for Games, pages 106.117. ACM Press,
2003.

[8] Cheok, A. D., X. Yang, Z. Z. Ying, Billinghurst, M., and
Kato, H. Touch-Space: Mixed Reality Game Space Based
on Ubiquitous, Tangible, and Social Computing. Personal
and Ubiquitous Computing, 2002. 6(5-6)

	1. INTRODUCTION
	2. RELATED WORK
	3. SYSTEM
	4. IMPLEMENTATION
	4.1 Calibration
	4.2 Modifying Weapon’s Orientation
	4.3 Gun Radar
	4.4 Weapon’s Pointer
	4.5 Jumping

	5. CONCLUSION AND FUTURE WORK
	6. REFERENCES

