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ABSTRACT

This paper presents the techniques employed in our team’s submis-
sions to the 2016 Emotion Recognition in the Wild contest, for the
sub-challenge of group-level emotion recognition. The objective of
this sub-challenge is to estimate the happiness intensity of groups
of people in consumer photos. We follow a predominately bottom-
up approach, in which the individual happiness level of each face is
estimated separately. The proposed technique is based on geomet-
ric features derived from 49 facial points. These features are used to
train a model on a subset of the HAPPEI dataset, balanced across
expression and headpose, using Partial Least Squares regression.
The trained model exhibits competitive performance for a range of
non-frontal poses, while at the same time offering a semantic in-
terpretation of the facial distances that may contribute positively
or negatively to group-level happiness. Various techniques are ex-
plored in combining these estimations in order to perform group-
level prediction, including the distribution of expressions, signifi-
cance of a face relative to the whole group, and mean estimation.
Our best submission achieves an RMSE of 0.8316 on the competi-
tion test set, which compares favorably to the RMSE of 1.30 of the
baseline.
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1. INTRODUCTION

Facial expression analysis (also known as emotion estimation,
or analysis of facial affect) has attracted significant attention in the
computer vision community during the past decade, since it lies
at the intersection of many important applications, such as human
computer interaction, surveillance, crowd analytics etc.

The majority of existing approaches focus on estimating emo-
tions for an individual face. As such, they usually attempt to clas-
sify 7 prototypical expressions, which have been found to be uni-
versal across cultures and subgroups. A very detailed and recent
review of these techniques can be found in [18].

Recently, there is interest in estimating the affective state of a
group of people as a whole. This may have direct applications in
personal photo collections [24], crowd affective analytics, or even
security. The Emotion Recognition in the Wild (EmotiW) contest
and its group-level emotion recognition sub-challenge focus on this
problem. Images are selected from Flickr and are annotated for
their overall happiness intensity level by human annotators. These
annotations serve as ground truth, which contesting models attempt
to predict.

One of the main challenges of this task is that images are cap-
tured “in the wild”. As a result, images may include occlusions,
non-frontal poses, non-uniform illumination, various face sizes, as
well as a range of ages and ethnicities. The dataset comprises
2638 images for the combined Training (TR) and Validation (VA)
datasets. This size makes it difficult to train large-scale models,
which may be prone to overfitting.

It has been shown that the perception of the overall happiness
intensity of a group is affected by both top-down and bottom-up
components [2]. Top-down attributes include factors external to the
individual members of the group, such as the scene or arrangement
of people. Bottom-up attributes are relevant to each member of the
group such as their facial expressions or facial attributes.

In this paper we approach group-level happiness predominately
from a bottom-up perspective. We introduce a regression model for
face-level happiness intensity with promising performance across
various head poses. The model is based on geometric features es-
timated from 49 facial points and trained on a balanced subset of
all the images of the HAPPEI dataset (TR+VA). The trained re-
gression model offers at the same time a semantic interpretation of
facial distances which may contribute positively and negatively to
a happy expression. In addition to the face-level estimations, we
also include some top-down features, such as sizes of faces and
the distances between them. Various training methods are explored
for learning group-level happiness, including simple feed-forward
neural networks and linear models based on Partial Least Squares
(PLS). Our best submission exhibits a RMSE of 0.8316 on the com-
petition test set, which compares favorably to the RMSE of 1.30 of
the baseline [3]].

The rest of the paper is organized as follows. Section[2]describes
previous works which are related to our study. Section [3|describes
in detail the proposed approach for face-level happiness estimation.
Section [4] discusses our approach for making group-level predic-
tions based on face-level happiness estimates. Section [5] evaluates



the results of our submissions and discusses some interesting find-
ings. Finally, concluding remarks are provided in Section [f]

2. RELATED WORK

The literature regarding face-level emotion estimation is exten-
sive. A comprehensive review can be found in [18]]. Most exist-
ing methods are based on appearance features, such as Local Bi-
nary Patterns [[11]], Histogram of Gradients (HoG) [13]], Gabor fea-
tures [[19]], or even raw pixel values in combination with deep learn-
ing methods [12]]. Very few employ geometric features [21]]. This
is due to the fact that landmark detection adds additional overhead
and — at least until recently — did not achieve robust performance.
In recent years however, facial landmark detection and tracking has
improved considerably. This has led to an increase in the num-
ber of methods preferring geometric over appearance-based fea-
tures. For example, the baselines of the 2015 and 2016 AVEC chal-
lenges [16120] employ geometric features for video-based emotion
recognition. Moreover handcrafted geometric features have also
been used on the EmotiW 2015 dataset [10].

Geometric features are derived from facial registration points.
They may include the actual coordinates of these points [17]] or
pairwise distances between them [14]. A large part of the literature
focuses on detecting and tracking facial registration points, usually
referred to as “face alignment”. An extensive review of this topic
can be found in [[15]]. Our approach employs distance-based geo-
metric features similar to [|14]].

Using face-level emotion estimations in order to infer the over-
all emotion of a group of people is a more complicated task. So
far, the literature regarding group-level estimation of emotions is
rather limited. One of the most important works is [2]], whose au-
thors performed a crowdsourcing study in order to estimate the
main factors that contribute to the impression of happiness in a
group photo. Based on these findings, they developed a model us-
ing both bottom-up and top-down characteristics in order to predict
the happiness intensity of unseen images. Another work in this
direction is [4]], which addresses the problem of classifying posi-
tive/neutral/negative group-level emotions in images using both lo-
cal and contextual features.

Contextual features may play an important role in predicting the
characteristics of a group [2], as well as affecting face-level estima-
tions. One of the first studies of this issue was [7]. Although this
study did not focus on emotion, it demonstrated the importance of
such approaches, since they reported a significant increase in per-
formance for age and gender estimations.

3. FACE-LEVEL ESTIMATION

Estimating the happiness level of individual faces is the first step
in assessing the overall happiness level of an image. The main
challenge however is the limited size of training data. The HAPPEI
dataset consists of 2638 images, which contain approximately 9400
faces in total. Although this might seem like an adequate training
set, it is not enough to cover the broad range of variability that faces
exhibit, such as differences in pose, occlusions, identity, gender,
age, or illumination. As a result, training directly with face pixel
values or texture features in such a limited-size dataset may result
in overfitting, limiting the generalization ability of the system.

Our main objective was to create a system that is as invariant
as possible to these factors of face variability. For this reason, we
decided to base our system on geometric features rather than pixel
values or texture. If facial points are estimated reliably, geomet-
ric features can capture the structure of the face, while being af-
fected minimally by identity, gender, age, illumination, and minor

occlusions like spectacles [[15418]. Instead of heuristically selecting
specific geometric features, we follow a data driven approach, in
which the most relevant geometric facial distances are discovered
by means of learning from the HAPPEI dataset. This is discussed
in the following.

3.1 Geometric Features

In all our submissions, we took the following approach to extract
geometric features. Faces were detected using OpenCV’s Viola-
Jones frontal face detector [[22]], with a minimum face size of 25x25
pixels, and the Intraface library [26] in order to detect 49 facial
points. Intraface was selected because it most accurate and ro-
bust facial point detection methods [15]. The score of the align-
ment model provided by Intraface was used to discard false positive
faces; any detection with a score lower than 0.3 was considered a
non-face. Additionally, the head-pose estimations of yaw and pitch
provided by Intraface were also stored for later use (Section [3.2).

After detecting all the faces from the whole HAPPEI dataset (TR
and VA), only the ones with annotations were kept. This resulted
in approximately 9400 faces. Since faces are roughly symmetric
along the horizontal axis, a mirror image of a face should have the
same emotion annotation. By exploiting the facial symmetry and
mirroring the detected faces, the dataset size can be nearly doubled
(the final number of faces is not exactly double because Intraface
did not converge in some of the mirrored faces). The final training
set consisted of 18767 annotated faces.

Let p € R?V be a vector containing the estimated x and y coor-
dinates of N facial points (in our case N = 49). In order to account
for different sizes of faces and to introduce scale invariance, the
coordinates of the facial points should be normalized according to
their scale. A straightforward approach is to normalize according
to the eye-to-eye distance. However, this could be heavily affected
by yaw; if a face is not frontal, the eye-to-eye distance becomes
smaller, thus affecting the scale. For this reason we use the root
mean squared distance from the average of the points of a face. We
consider a subset of only 13 less-deformable facial points (points
that change minimally with expression). These include the eyes,
the nose, and the middle of the upper lip. Eyebrows and the major-
ity of the mouth points are excluded, since their coordinates may
change significantly with different expressions, thus, affecting the
scale. Let py € R¥" be a vector containing the coordinates of the
13 less-deformable points (n = 13) of a face. Then the scale S is
estimated as follows:

§— HPs*PxH2’ 1)
2y/n
where p; is the vector containing the mean coordinates among the

set of the less-deformable points of the face. p with the scale-
invariant coordinates can now be estimated as follows:

1

p=3p 2

The scale-invariant points p are used to extract the facial geometric
features. We define these features as “all possible combinations of
Euclidean distances among p”. As such, there can be (g’ ) distances
(in our case 1176) for each face. Although the dimensionality of
these features is high, they offer the advantage of being invariant to
roll, as well as allowing for a direct semantic interpretation of facial
deformations (section[5.2). Additionally, their high dimensionality
can be addressed by using a training approach which incorporates
dimensionality reduction (section 3.3). All our submissions uti-
lized this type of geometric features for the face-level estimation of
happiness intensity. Fig.|l| depicts the flowchart of all our 8 sub-
missions, as well as their performance for different dataset splits.
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Figure 1: Flowchart of the different approaches used in our submissions.

3.2 Balancing the Data

The left column of Fig. 2] depicts the distribution of the full
HAPPEI dataset (18767 faces from TR+VA) for 3 different at-
tributes: intensity of happiness, yaw, and pitch. It is evident that
the dataset is significantly skewed towards frontal faces of inten-
sity 3. Most of the other happiness intensities or head poses are
under-represented. Training directly with such skewed data may
compromise the generalization ability of the system.

For this reason, we leveraged on the existing redundancies of the
dataset in order to create a more balanced subset, which we will
subsequently use as a training set for face-level happiness estima-
tion. More specifically, we aimed for a uniform training distribu-
tion, which would include all the training examples of the most
under-represented intensity quantization bin: those annotated as
0 (neutral) and those annotated as 5 (thrilled). We opted to have
1432 training examples per intensity bin, which is the number of
faces annotated as 5. This results in a training subset with a total of
1432 x 6 = 8592 training faces.

Two different techniques for creating a balanced subset were ex-
plored. The first was to “trim” the intensity quantization bins which
were over-represented by randomly selecting only 1432 training
examples. Submissions 1 and 2 were based on this technique, with
the latter including a change in the interval of labels from [0,5] to
[-1,6]. Although simple, this balancing approach takes into consid-
eration only happiness intensity and does not consider headpose.
As such, the resulting randomly balanced subset may be signifi-
cantly skewed in terms of headpose.

Creating a balanced subset which enforces a uniform distribu-
tion in happiness intensity as well as yaw and pitch is a challenging
combinatorial problem. For this reason we employed a method
we presented in [23]{1_-] This approach utilizes Mixed Integer Lin-
ear Programming (MILP) in order to enforce a specific distribution
across different dimensions when selecting a subset from a larger
dataset. Yaw and pitch were normalized to standard scores, trun-
cated to the interval [—36, 30] and quantized into 6 bins in order to
match the quantization of happiness intensity. The quantized data
were used in the MILP optimization, which found the optimal com-
bination of training examples that would result to a distribution as
close to uniform as possible, across happiness, yaw and pitch.

The right column of Fig. [2]depicts the distributions of the result-
ing MILP subset, all of which are closer to uniform, as much as
the redundancy of the original dataset allows. The yaw and pitch
dimensions are significantly under-represented for angles greater
than +20°; there are simply not enough training examples to form
a perfectly uniform distribution. Notice however that all the under-
represented training examples both for intensity (0 and 5), as well
as for yaw and pitch (< —20° and > 20°) are simultaneously in-
cluded in the balanced subset; the ‘before’ and ‘after’ distributions
are identical in their outer regions. This would be very difficult
to achieve with a simple random sub-sampling, and ensures that
the resulting subset includes the maximum available information
across all 3 dimensions. Submission 3 and submissions 5-8 are

1 Code is available at https://sites.google.com/site/vonikakis/
software-code/dataset_shaping.
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Figure 2: Left column: Distributions of the 18767 detected
faces from the full HAPPEI dataset (TR+VA) for happiness in-
tensity, yaw, and pitch. Right column: distributions of a more
balanced subset of the HAPPEI dataset, as generated by the
method in [23].

based on this approach. Finally, directly training with all 18767
HAPPEI faces was also tested (submission 4).

3.3 Training

The high dimensionality of the geometric feature vector can po-
tentially be a limiting factor in the attempt to create a predictive sys-
tem. The fact that all possible distances between the 49 facial points
are considered, indicates that many among the 1176 distances may
be very similar and even highly correlated, since they derive from
neighboring facial points. This raises the danger of multicolinear-
ity for typical regression-based systems. However, it is reasonable
to assume that the observed data (displacement of facial points /
change in distances) is generated by a system or process which is
driven by a smaller number of not directly observed or measured
variables. Such latent variables could be the facial muscles or Ac-
tion Units described by the FACS [5].

This makes the use of Partial Least Squares (PLS) regression
very appealing for this case, since it is particularly useful for pre-
dicting a response variable from a large set of highly correlated
predictors, while at the same time making use of their common
structure. More specifically, PLS projects the predictors to a set
of orthogonal latent vectors, or components, which have the best
predictive power to approximate the response variable. In essence,
it combines characteristics of both Principal Component Analysis
(PCA) (maximum variance of inputs) and Ordinary Least Squares
(OLS) (maximum input-output correlation), by maximizing the co-

variance between the response and predictor variables. As such, it
performs dimensionality reduction and prediction in a single step.
Assuming a set of predictor variables in the form of a matrix X
(rows corresponding to observations) and a set of response vari-
ables Y, the PLS framework decomposes them into the form:

X=TP' +E,
Y=UQ' +F,

where T and U are matrices containing the extracted latent compo-
nents, P and Q represent the loadings, and E and F the residuals.
The PLS algorithm finds the weight vectors w and v by optimiz-
ing the following objective function to maximize the covariance
between the latent components of the predictor and the response
variables:

[cov (t,u)]* = maxy|—|y|1 [cov (Xw, Yv))?,

where t and u are the column vectors of T and U, respectively,
and cov (t,u) is the sample covariance. With the estimated latent
components T and U, the regression coefficients between X and Y
can be estimated by:

—1
B=X'U (TTXXTU> TTY.

As such, the predicted response can be estimated by a simple ma-
trix multiplication ¥ = XB. All our submissions used the Matlab
implementation of PLS called pisregress, which is based on the
SIMPLS algorithm [[1].

The number of latent components plays an important role in the
success of the model and may act as a kind of regularization. De-
ciding on the number of components is very important. A large
number of components will do a good job in fitting the current ob-
served data, but will result in overfitting and thus poor generaliza-
tion ability. For this reason we studied the impact of different num-
bers of latent components on the overall performance of 3 different
approaches: MILP balancing, random balancing, and no balancing.
Fig.[3]depicts the results.

It is clear that the MILP balancing technique achieves approxi-
mately the same minimum RMSE and percentage of explained vari-
ance with half the number of components compared to random bal-
ancing (40 vs. 80). This is an indication of its better generalization
ability. As such, all the subsequent submissions (5-8) were based
on this approach. It should be noted that the performance of the
random balancing technique fluctuates according to the randomly
selected subset (theoretically, although highly unlikely in practice,
it could be the same as the MILP approach if exactly the same train-
ing examples were randomly selected). In all our experiments, the
minimum RMSE for the random balancing was achieved with 60-
100 components.

It is also evident that using the whole available dataset without
balancing results in severe overfitting. RMSE drops monotonically
with increased number of components, but the percentage of ex-
plained variance remains very low compared to the balancing ap-
proaches. This essentially means that the system overfits on the
most over-represented happiness classes (2 and 3) and does not
learn to recognize the under-represented cases (0 and 5). This high-
lights the importance of balancing: training with a more balanced
subset (with less than half the number of training samples) results
in better generalization characteristics.

Fig. [ depicts the result of the proposed face-level happiness es-
timation algorithm, trained on the MILP balanced subset, for some
faces from the Gallagher dataset [6]]. It is evident that the algo-
rithm can estimate a broad range of happiness expressions, even
though in some of the cases the headpose is far from frontal. More
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Figure 3: Impact of the number of PLS components on the
RMSE and the % explained variance, for different balancing
techniques. The MILP balancing approach achieves approxi-
mately the same minimum RMSE with half the number of com-
ponents compared to random balancing (40 vs. 80).

importantly though, the ordinal relation between expressions is pre-
served, i.e. a face that appears less happy than another will have a
lower score.

4. GROUP-LEVEL ESTIMATION

Having obtained face-level estimations of happiness intensity for
each individual face in an image, we now combine them in order
to get an estimation of the overall happiness of the image. In this
section we discuss the features and training strategies we used in
our submissions for this purpose.

4.1 Mean of Face-level Estimations

Using the mean of face-level estimations as a predictor for the
overall group-level happiness is the simplest approach one can use.
Undoubtedly, group-level happiness is more complicated than a
simple mean of local happiness estimations, as discussed in [2].
However, averaging the provided face happiness annotations for
each image gave a RMSETg = 0.63 for the TR set, a RMSEys =
0.59 for the VA dataset and a RMSETgy4 = 0.61 for the combined
TR and VA datasets, which is considerably lower than the baseline
of 0.78 for VA [3]]. This prompted us not to dismiss this approach.
As such, our submissions 1 to 4 use the mean % of our face-level
happiness predictions to estimate the group-level happiness.

bl

k )
where h is a vector containing all the face-level happiness estima-
tions, and k is the total number of detected faces.

h= 3)

4.2 Happiness Distribution

Our objective is to follow a data-driven approach for using face-
level predictions in order to estimate group-level happiness. Simply
combining all face-level predictions in a feature vector is not ideal,
since the number of people per image varies and thus, the vector
length will change as well. For this reason the distribution of our
face-level predictions was used; all face-level estimations of an im-
age were rounded to the nearest integer and combined into a 6-bin
histogram, ranging from O to 5. The histogram was then normalized
with the total number of detected faces k, resulting in the following
happiness distribution d.

Y*_ 8 (i—round[h;

d(l) _ & 1 ( [ JD7
k

where 8 is the Kronecker delta function, i € [0,5], A; is the face-

level happiness estimation for face j, and round[-] a function that
rounds its argument to the nearest integer. This distribution was

4

combined with the mean / of all face-level estimations in order to
form a 7-element feature vector, which was then used for training.

A two-layer feed-forward neural network was used in order to
learn the mapping from the 7-element feature vector to the given
image annotations. It comprised 10 hidden sigmoid neurons and
a single linear output neuron. Training was performed with the
Levenberg-Marquardt backpropagation algorithm using Matlab’s
nftool and a MSE metric.

As with the individual faces, the image annotations in HAPPEI
for the group-level estimations are highly unbalanced, with very
few cases of high (=~ 1.4% with 5) and low (=~ 3.5% with 0) in-
tensity. Fig.[5]depicts the distributions of HAPPEI for group-level
happiness. This motivates us to use the combined TR+VA datasets
in order to train our models for the final submissions, since we can-
not afford to split the already very few training examples for labels
0 and 5.

Following the same approach as before, a randomly balanced
subset of 498 images was created out of the combined TR+VA
datasets. The subset had an approximately uniform distribution
and included all the training annotations of low (0) and high (5) in-
tensity images, with only a random subset of the over-represented
classes 1 through 4. The network was trained in the combined
TR+VA dataset and validated in the balanced subset. Our sub-
mission 5 was based on this training scheme, exhibiting the best
performance in the test set. Fig. [f] depicts the error histogram, as
well as the validation and training errors for each epoch.

4.3 Face Significance

In submissions 1-5, all detected faces contributed equally to the
group-level estimation. However it has been shown that this is not
generally the case [2]]. Larger faces and ones that are closer to the
group seem to have a greater impact on the overall mood of an
image. Therefore we estimate the significance s; of a face i using
the following equation:

b;

Zl;’:l Hci*ch;

®)

N

where b; is the size of the bounding box of face i (in pixels), ¢; is a
vector containing the x and y coordinates of its bounding box cen-
ter, and k the total number of detected faces in the image. Equation
(3) essentially normalizes the size of a face by the sum of its Eu-
clidean distances with all other faces. As a result, small faces which
are located away from the group are penalized, while larger faces
which are closer to all others are assigned a higher significance. If
k = 1, then significance is set to 1.

The significance s of each face is used in order to adjust its con-
tribution in the group mean and in the happiness distribution. More
specifically, the estimation of the mean now becomes a weighted
average h based on the face-level estimations and the correspond-
ing significance of each face, as follows:

T
h= Ej (6)
[Islly

where h and s are vectors containing all the face-level happiness
estimations and the significance of each face, respectively. Using
directly / as an estimator for the group-level happiness results in
RMSETR+v4 = 0.6408, which is a slight improvement compared to
hwith an RMSE7g, va = 0.6422. Similarly, equation (4} is changed
accordingly in order to utilize face significance in the happiness

distribution:
_ Z’jzlﬁ(i—round[hj})sj

a(i) = T, @
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Figure 4: Results of the proposed face-level happiness estimation algorithm on unseen data from the Gallagher dataset [6].
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Figure 5: Distributions of group-level happiness intensity for
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Figure 6: Best validation performance and error histogram for
submission 5.

As before, d is combined with /1 to form a 7-element feature vector,
which is used in submissions 6-8.

Submissions 6 and 7 follow the same approach as submission
5; training in the whole dataset and validating on a balanced sub-
set. The difference is that the balanced subset was created with the
MILP approach of [23]. More specifically, the balancing method
was used in order to select a subset (out of the combined TR+VA
datasets) with uniform distributions across 3 attributes: overall im-
age happiness, average size of faces, and number of detected faces.
The network characteristics were identical with submission 5, with
the exception that submission 7 was based on a network with only
5 hidden neurons.

Finally, submission 8 used exactly the same features as submis-
sions 6 and 7, but instead of a neural network, the PLS method
with 6 latent components was used. The purpose of this was to ex-
plore the performance of a simpler linear model in addition to the
non-linear neural networks which are more prone to overfitting.

S. DISCUSSION

Fig. [T] depicts the flowchart and the performance of all our ap-
proaches. None of our submissions are based on the provided TR
and VA splits; instead we created our own in order to make bet-
ter use of the available data, especially for the under-represented
classes of 0 (neutral) and 5 (thrilled). The performance of our sub-
mitted models is depicted in the middle and right columns. How-

ever, to facilitate comparisons with other methods, we also include
the performance of our submissions when trained according to the
provided TR and VA splits in the left column. The legend on the
lower left part of Fig. [T] provides details regarding the data splits.

5.1 Model Evaluation

One immediate observation from Fig. [I]is that when following
the provided TR and VA splits, all models exhibit a lower RMSE
by at least 0.05. This may be due to the fact that the provided TR
and VA splits have a very similar distribution, as seen in Fig. ]
However, since the distribution of the test (TE) set may be different
compared to TR and VA, this may become a limiting factor, which
— in conjunction with the under-represented classes of 0 and 5 —
may result in lower generalization characteristics.

Another insight from Fig.[T]is that the proposed regression-based
face-level estimation of happiness is promising. The geometric fea-
tures, although not popular in the facial expression analysis com-
munity, seem to estimate different intensities of happiness reliably,
when the detection of facial points is accurate.

Having a diverse dataset with many different training examples
across different headposes contributes to an increased performance.
Even more, a balanced dataset will result to a more stable estima-
tion across different headposes. Fig. [7] depicts the results of the
proposed algorithm for different viewpoints of the same expres-
sion, for a face taken from the Multi-PIE dataset [§]. It can be
seen that yaw has a moderate impact on the estimation of happi-
ness intensity. Within £15° from frontal, happiness may fluctu-
ate up to 10%, whereas for higher deviations like £45°, happiness
may change up to 17%. The combination of higher yaw and pitch
values seems to have a greater impact on the happiness estimation
exhibiting a difference of approximately 30% compared to frontal.
However, such headpose combinations are unlikely to be encoun-
tered in personal photo-collections, where most of the photos fea-
ture frontal faces. The observed discrepancy between frontal and
higher yaw/pitch values may be attributed to the lack of training ex-
amples for these cases. It is expected that a diverse training dataset
with enough examples for non-frontal faces, in combination with
the proposed training approach, would result in more headpose-
invariant happiness estimations.

The dataset balancing strategy also exhibited promising results,
at least for the face-level model. Training with a subset of 8592
faces (46% of the whole dataset), balanced across 3 different at-
tributes (happiness intensity, yaw, pitch), proved to be better in
terms of generalization capability, compared to training directly
with 18767 faces. This indicates that more data is not necessar-
ily better. When a training dataset is highly skewed and acquiring
additional data is not possible, it may be preferable to compile a
balanced subset, with as uniform a distribution as possible across
all important dimensions. For this purpose, the MILP balancing
approach appears to result in models that can generalize better with
fewer latent components, compared to compiling a training subset
randomly.

The simple averaging of face-level estimations also exhibited un-
expectedly competitive results. Actually, submission 3, which is
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Figure 7: Results of the proposed face-level happiness estimation algorithm, on different yaw/pitch combinations of the same unseen

expression (taken from the Multi-PIE dataset [8]]).

based on a simple mean of the estimated face happiness intensities,
exhibited the second best performance in the test set. This may im-
ply that bottom-up techniques may be more competitive than top-
down approaches for group-level happiness estimation.

The significance factor of each face, which takes into consider-
ation face size and average distance with all the other faces, ex-
hibited a modest performance improvement. Although the submis-
sions in which it was included did not perform very well, this could
be due to the training strategy rather than the type of feature. In
fact, when compared to the simple mean, the addition of the face
significance factor improves the overall RMSE in the combined TR
and VA dataset from 0.6422 to 0.6408. Since no training method
is involved in the use of a simple averaging, this improvement may
not be the result of overfitting, but may have to do with the effi-
ciency of the feature.

The inclusion of the happiness distribution feature did not seem
to improve the results as initially expected. Although the best sub-
mission (5) included this feature, the improvement was marginal
compared to the simple mean of submission 3, and it could easily
be due to the training method used.

Finally, the training strategy used in the neural networks of sub-
missions 5-7 indicates that overfitting was an issue. The perfor-
mance for the combination of TR+VA increased, but performance
in the test set was reduced. The non-balanced dataset, as well as
the type of features used could be additional limiting factors here.

5.2 Feature Interpretation

The use of distances as geometric features may offer a direct
semantic interpretation of facial deformations. The set of learned
regression weights contained in matrix B gives a strong indication
on the contribution of each facial distance to the overall estima-
tion of a face’s happiness. A similar approach has also been re-
cently used for feature ranking/selection [9]. Fig.[8]depicts the top
100 distances with the highest positive and negative contributions
to the estimation of happiness. Positive contributions represent a
proportional relation, i.e. happiness increases with distance, and
vice-versa for negative contributions.

The facial distances with the stronger positive impact to happi-
ness are located in the mouth, connecting outer points of the upper
part of the lower lip with the outer points of the upper part of the
upper lip (points 49-33 and 47-37 in the Intraface numbering con-
vention). This intuitively makes sense, since these 2 distances can
capture both the opening movement of the mouth and the extension
of the corners that occurs during smiling. The same also accounts
for the second strongest positive distances (Intraface points 48-44
and 48-46), which form a V shape in the middle of the inner part
of the mouth and can also capture these two motions. Many other
positive distances capture the eccentricity of the mouth in relation
to a stable point, e.g. the tip of the nose. Finally, the inner points
of the eyebrows seem to play also an important positive role, both

Top 100 negatively correlated distances Top 100 positively correlated distances

Figure 8: Top 100 distances that contribute negatively and pos-
itively to the model’s estimation of happiness. Thicker and
brighter lines indicate higher contribution.

in relation to each other as well as to the corners of the mouth,
forming a IT shape.

The facial distances with the stronger negative impact to happi-
ness are related mainly with the corners of the mouth. Interestingly,
the distance of the mouth corners in relation to a distant facial point
seems to affect the formation of happy/excited expressions both
in a positive and negative way. However, the ‘distant’ points are
different in each case. For the positive case, these are the inner
parts of the eyebrows. This means that when the inner eyebrows as
raised and the corners are extended, the mouth-eyebrow distance
increases, contributing positively to a happy impression. On the
other hand, the ‘distant’ points for the negative case are the inner
corners of the eyes. These points are among the most stable ones,
since they do not move during various facial expressions. As such,
the only way that the eye-mouth distance can increase is by extend-
ing the corners of the mouth downwards, which is associated with
sad expressions. Consequently, when distances between Intraface
points 23-32 and 26-38 are increased, the impression of a face’s
happiness decreases.

6. CONCLUSIONS

This paper presented a series of techniques employed for the
group-level emotion recognition sub-challenge of the EmotiW 2016
contest. Our approach is predominately based on bottom-up ele-
ments, in which the individual happiness level of each face is es-
timated separately. The proposed uses geometric features derived
from 49 facial points. These features are used in order to train a
model on a carefully compiled dataset using Partial Least Squares
regression. The training dataset is a subset of the whole HAPPEI
dataset, which we carefully balanced across emotion, yaw, and
pitch. In addition to the face-level estimations, some top-down
features are also employed. Various techniques are explored in



combining these estimations in order to achieve a good group-level
prediction. Our best submission exhibits an RMSE of 0.8316 on
the competition test set, which compares favorably to the RMSE
of 1.30 of the baseline [3|]. Our future work includes the addition
of more complex top-down scene-related features, such as the pro-
vided CENTRIST descriptor [25], which may further improve the
performance of the method.
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