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Abstract—Color channel selection is essential for accurate
segmentation of sky and clouds in images obtained from ground-
based sky cameras. Most prior works in cloud segmentation use
threshold based methods on color channels selected in an ad-hoc
manner. In this letter, we propose the use of rough sets for color
channel selection in visible-light images. Our proposed approach
assesses color channels with respect to their contribution for
segmentation, and identifies the most effective ones.

Index Terms—Color channel, rough set, Whole Sky Imagers
(WSIs), cloud analysis.

I. INTRODUCTION

GROUND-BASED whole sky imagers (WSIs) are be-
coming popular among the remote sensing community.

They provide instantaneous data of cloud formations and are
thus useful in a variety of applications [1]. WSIs complement
satellite images with localized data of higher temporal and
spatial resolution. They capture images of the sky at regular
intervals and archive them for processing. Most WSIs use
traditional cameras in the visible-light spectrum [2], while a
few models capture the near-infrared range as well [3], [4].

Typical post-processing algorithms include the computation
of the fraction of the sky covered by clouds [5], [6], the
recognition of cloud types [7], or the estimation of the cloud
base height [8]. A prerequisite for these applications is the
segmentation of clouds from the sky, with each pixel of the
image classified as either sky or cloud. As the sky is pre-
dominantly blue because of Rayleigh scattering, most existing
approaches use thresholding on an ad-hoc combination of red
and blue color channels [9], [10]. Kreuter et al. [9] used a fixed
threshold for the blue/red ratio. Calbó and Sabburg [11] use
various statistical features (mean, standard deviation, entropy,
etc.) obtained from red and blue channels for successful
detection and subsequent labeling of pixels. The difference of
red and blue channels is exploited in [12], [13]. The saturation
channel of the HSV color model is used in [14]. Recently, Li
et al. [10] proposed the use of a normalized red/blue ratio for
cloud detection.

We believe only a structured review of color channels allows
us to systematically select the one(s) with the most discrimi-
native cues. This helps to efficiently represent the images in a
lower-dimensional subspace. Such systematic analysis of color
channels for sky/cloud images is important for subsequent
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tasks, such as cloud type recognition or feature matching in
cloud base height estimation. An analysis of several color
channels for sky/cloud segmentation is provided in our pre-
vious works, where we used bimodality [15] and principal
component analysis [6] to determine favorable channels. How-
ever, these techniques had certain shortcomings with regards to
ranking color channels according to their relevance for cloud
segmentation, as their correlation with cloud segmentation
accuracy is relatively weak. Several other techniques have been
used for selecting the most discriminative features in a classi-
fication problem. Serrano et al. [16] chose the area under the
Receiver Operator Characteristic (ROC) curves [17] for feature
selection in a synthetic dataset. Information-theoretic measures
like Kullback-Leibler (KL) distance or divergence have been
applied to band selection in hyperspectral imaging [18].

Our main contribution in this letter is to determine those
color channels that are most discriminative in identifying
cloud pixels in traditional visible-light images. We extend the
benchmarking done in [15] using a rough set based approach
that can accurately assess the efficiency of different color
channels for cloud segmentation.1 Rough set theory, originally
introduced by Pawlak [19], is useful for representing uncertain
data with a level of approximation, and selecting the most
discriminative features from the feature space. Recently, it has
been successfully applied to hyperspectral band selection [20].
To the best of our knowledge, our proposed approach is the
first that uses rough set theory for color channel selection in
visible-light images.

The remaining letter is organized as follows. In Section II,
we describe the fundamental concepts behind rough set theory
and present our proposed color channel selection algorithm.
Experimental results are presented in Section III. Finally,
Section IV concludes the letter.

II. ROUGH SET BASED COLOR CHANNEL SELECTION

Classical rough sets [19] are an approximation of conven-
tional sets in set theory. In a scenario where it is difficult
to define the boundaries of a conventional set, rough set
theory provides a set of mathematical tools to define them
in a approximate way. It facilitates an objective analysis in a
data-driven system which is vague, uncertain and incomplete.
Here we first explain the related terminologies of rough sets,
and subsequently define the use of rough sets for visible-light
images.

A. Rough Set Theory
In rough sets, information is expressed in the form of a

decision table. We define a decision table L such that each row
1 The source code of all simulations in this paper is available online at

https://github.com/Soumyabrata/rough-sets.

https://github.com/Soumyabrata/rough-sets
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represents an observation, and each column is an attribute from
attribute set A. This non-empty set of observations is usually
referred to as the universe U . Formally, for each entry in the
decision table, we define the function f that maps attribute A
to value domain V , f : U ×A → V .

Any reduct P from the set of attributes A satisfies the
indiscernibility (or equivalence) relation IND(P). For any
reduct P ∈ A, the P-indiscernibility relation is defined as:

IND(P) = {(xm, xn) ∈ U2|∀a ∈ P, f(xm, a) = f(xn, a)},
(1)

where xm and xn are two observations from the universe U ,
and a is an element from set P . This indicates that xm and
xn are indiscernable based on the attribute P , as the value
function f assigns both xm and xn to the same value. This
partition of U generated by IND(P) is denoted as:

U/IND(P) = {[xm]P |xm ∈ U}. (2)

Let X be a set of observations from the universe U .
Rough set theory asks the question: how can we express this
conventional set X , using only the information in attribute
set P? In general, there is no precise answer, and therefore
approximations are generated. They are defined by their cor-
responding P-lower- and P-upper-approximations as:

P(X ) = ∪{[xm]|[xm] ⊆ X}, (3a)

P(X ) = ∪{[xm]|[xm] ∩ X 6= φ}. (3b)

The observations in the lower approximation set P(X ) are
the definite members of X , also called the positive region
POS(X ). On the other hand, P(X ) represents the upper
approximation of the set. It denotes the possible members of
X , based on the knowledge in the decision table. We illustrate
this in Fig.1.

P(X )

X

P(X )

Fig. 1: Illustration of a typical rough set, which approximates
a conventional set X (depicted in blue). Each individual grid
depicts a partition of the universe generated by an equiva-
lence relation. The union of all such partitions indicated with
solid green borders (definite members) represents the lower
approximation P(X ); while the dotted red borders (possible
members) represent the upper approximation P(X ).

Let us assume that the attribute set A consists of both
condition and decision attributes C and D respectively, such
that A = C ∪ D. The relevance criterion is defined as the

dependence between C and D, and can be expressed as:

γC(D) =
|POSC(D)|
|U|

, (4)

where |·| denotes the cardinality of the set. This dependence
value is an important measure to identify the most discriminate
attribute from set A. The value of γC(D) ranges between 0
and 1, where 0 indicates independence and 1 indicates D fully
depends on C.

B. Color Channel Selection Using Rough Sets

We now describe the problem of color channel selection
using rough set terminology and propose our algorithm for
this purpose. The main benefit of using rough set theory is that
it provides a systematic method to approximate the segmen-
tation ground truth, with the highest degree of approximation.
Moreover, no prior information about the data is needed for
the analysis.

We consider 16 color channels in our analysis, as shown in
Table I and illustrated in Fig. 2. They include RGB, HSV ,
Y IQ, CIE L∗a∗b∗ color models, various red-blue combi-
nations, and chroma C = max(R,G,B) − min(R,G,B).
Several of these color channels are commonly used for thresh-
olding in sky/cloud images [10], [14], [15]. We utilize rough
set theory to identify the most informative color channel(s)
(a.k.a. reducts) from these 16.

c1 R c4 H c7 Y c10 L∗ c13 R/B c16 C
c2 G c5 S c8 I c11 a∗ c14 R−B
c3 B c6 V c9 Q c12 b∗ c15

B−R
B+R

TABLE I: Color spaces and components used for analysis.

Suppose that Ui is a non-empty finite universe of pixel
observations for a single sky/cloud image Ii from the image
dataset T = {I1, I2, . . . , IN}. The set of pixels corresponding
to the ground-truth observation for an image Ii is Gi. We define
Ai as the set of its corresponding vectorized color channels
{c1, c2, . . . , c16} for a particular image Ii, along with the
vectorized decision attribute gi. These 16 color channels are
called condition attribute sets, and one ground truth vectorized
image is the decision attribute set from the family of attributes
Ai.

We define a decision table Li such that each row represents
a pixel, and each column represents an attribute. Thus, for a
single image Ii, the function f assigns a value vkji in the value
domain to each variable-attribute pair (qk,aj), where qk is the
k-th pixel value of the image and aj is the j-th attribute from
the set Ai. For the sake of brevity, we will drop the index i
in the subsequent discussions.

Our objective is to characterize the ground-truth image g
from the knowledge of the reduct P . We define the reduct P
as the subset of condition attribute sets C.

We are interested in identifying the most discriminative
color channel that is strongly dependent on the sky/cloud
decision attribute g. This dependence on a particular color
channel is measured by the corresponding relevance criterion
of the color channels. Color channels with a high relevance
value are better candidates for sky/cloud segmentation.



IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. XX, NO. XX, XX 2016 3

Input Image c1 c2 c3 c4 c5 c6 c7 c8

Ground Truth c9 c10 c11 c12 c13 c14 c15 c16

Fig. 2: Sample image and segmentation mask from the HYTA database [10], together with the 16 color channels from Table I
(the color maps for c4, c5, c9, c15, and c16 are inverted such that cloud pixels always have a lighter shade than sky pixels).

In analogy to Eq. (4), we define the relevance criterion γj
for each color channel cj , which indicates the dependence
between ground truth g and color channels:

γj =
|POS(g)|
|U|

. (5)

For image Ii ∈ IRr×s, we generate the decision table Li ∈
IRrs×17. Each row of the decision table Li corresponds to a
pixel. The first 16 columns represent the color channels, and
the 17th column corresponds to the ground truth label. We
generate 16 distinct partitions from this decision table using
the knowledge of the ground truth labels. Subsequently, the
corresponding lower approximations of 16 color channels are
generated using Eq. (3). In fact, this lower-approximation set
is the union of all partitions (generated by the equivalence
relation) that are possible members of the cloud label. Next,
we compute the relevance value γj of all color channels for
the image Ii using Eq. (5).

We perform this for all images of dataset T . Finally, we
compute the average relevance γj of each color channel across
all the images. The color channel with the maximum average
relevance value γj is the best amongst all color channels under
consideration.

III. EXPERIMENTS

A. Dataset

In order to check the efficacy of our proposed color channel
selection algorithm, we conduct experiments on a publicly
available sky/cloud image database called HYTA [10]. It con-
sists of 32 sky/cloud images with varying sky conditions, along
with their corresponding segmentation masks (cf. Fig. 2). The
images were collected by sky cameras located in Beijing and
Conghua, China.

B. Cloud Classification Performance

In this section, we evaluate the discriminative power of each
of the 16 color channels with respect to the cloud classification
task. We target a single color channel for sky/cloud image
segmentation, because in our previous work [6], [15] we
observed that there is no significant improvement when using
a combination of multiple color channels.

We follow a supervised learning approach and train a Sup-
port Vector Machine (SVM) to validate our findings. We use
each of the 16 color channels separately as candidate feature

vectors and train 16 different SVMs. The trained SVMs are
then used for sky/cloud pixel classification in order to check
the efficacy of respective color channels in the classification
task. We randomly segregate the HYTA dataset into 15 training
images and 17 test images.

For an objective evaluation of our algorithm, we report
the F-score and Accuracy. Suppose TP , FP , TN , and FN
denote the true positives, false positives, true negatives, and
false negatives, respectively, in this binary classification task.
Accuracy is defined as the ratio of pixels that are correctly
classified, (TP + TN)/(TP + TN + FP + FN). The F-
score, a popular metric in a binary classification problems, is
defined as the harmonic mean of Precision = TP/(TP+FP )
and Recall = TP/(TP + FN).

Figure 3 shows the binary classification results for each
of the 16 color channels, computed over 50 different random
selections of training and test sets.

We observe from Fig. 3 that color channels c15 (B−RB+R ) and
c5 (S) have relatively higher accuracy and smaller variation
as compared to the other color channels. Conversely, color
channels c11 (a∗) and c4 (H) score poorly in terms of accuracy.
Therefore, each color channel has different discriminative
power to classify sky and cloud pixels from ground-based
images. This ranking of color channels in terms of their
classification performance serves as the ground-truth to verify
the efficacy of different color channel selection algorithms.

C. Benchmarking

In our proposed rough set based method, we measure the
dependency of each color channel and report its corresponding
average relevance value γ across all images of HYTA. Table II
summarizes the results. We observe that certain color channels
viz. c15 (B−RB+R ), c13 (RB ), c5 (S) have higher relevance scores
as compared to others, making these color channels favorable
candidates for sky/cloud image segmentation. On the other
hand, color channels c11 (a∗) and c4 (H) have low relevance
scores, indicating that these color channels contribute less
to the decision attribute for (non-) cloud pixels. Therefore,
the latter color channels are not conducive for sky/cloud
segmentation.

We verify this by obtaining the correlation of the individual
relevance values of color channels with the sky/cloud segmen-
tation results, and we benchmark our proposed rough set based
algorithm with prior works on color channel selection [15].
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Fig. 3: (a) Accuracy and (b) F-scores for 16 color channels for
all images in the HYTA database. For each box, the central red
line indicates the median, the top and bottom edges correspond
to 25th and 75th percentiles, and the whiskers represent the
extreme data points.

c1 0.70 c4 0.46 c7 0.72 c10 0.66 c13 0.84 c16 0.66
c2 0.66 c5 0.82 c8 0.78 c11 0.33 c14 0.69
c3 0.58 c6 0.58 c9 0.69 c12 0.61 c15 0.84

TABLE II: Average relevance value across all images of
the HYTA database. The most relevant color channels are
highlighted in bold.

As we are interested in a binary segmentation, color chan-
nels exhibiting higher bimodal behavior are favorable. Pear-
son’s Bimodality Index (PBI) [21] for all 16 color channels
is computed. A PBI value close to unity indicates highest
bimodality, and values higher than 1 indicate departure from
bimodal behavior.

Principal Component Analysis (PCA) is used to determine
the color channels that capture the highest variance. We

compute the absolute value of the loading factors, defined as
the re-projections of the data point on the principal component
axes, for the 16 color channels, and consider the component on
the first principal component axis. Those color channels with
high loading factors on the first eigenvector are considered
favorable color channels.

We also compute the area under ROC curve individually
for the 16 color channels. A higher area under ROC curve
for a particular color channel indicates that its classifier
performance is better than the random classifier.

Lastly, the KL-divergence of the color channels from the
binary ground truth images is computed. This distance can be
interpreted as the amount of dissimilarity of the color channel
from the ground truth. In other words, a higher distance
indicates an unfavorable color channel for cloud segmentation.

We check the correlation of the average accuracy scores for
all the color channels with the normalized scores obtained
from different approaches. Table III shows the correlation
coefficients of these approaches with the average classification
accuracy of the color channels. Our proposed method using
rough sets achieves the highest correlation.

Methods Correlation (r)
Proposed approach 0.84 (↑)
Bimodality −0.58 (↓)
Loading factors 0.57 (↑)
ROC curve 0.78 (↑)
Kullback-Leibler divergence 0.12 (↓)

TABLE III: Correlation of cloud classification accuracy with
ranking scores obtained using different methods. The ↑ (or ↓)
indicates if higher (or lower) magnitude signifies better per-
formance.

Figure 4 shows the respective scatter plots. The correlation
coefficient is highest (r = 0.84) for our proposed algorithm.
From Fig. 4(a), we can clearly see that color channels c5 (S)
and c15 (B−RB+R ) are better candidates for sky/cloud classifica-
tion. Similarly, color channels c11 and c4 with lower relevance
scores are poor candidates. Figure 4(b) also reveals that c5
and c15 are conducive color channels as their PBI values are
closer to 1. Similar results can be drawn from Fig. 4(c), where
favorable color channels c5 and c15 have comparatively lower
KL-divergence values, and color channel c4 has the highest
KL-distance. However, the order of ranking for the other color
channels is poor, leading to a low correlation value (r = 0.12).

From these results, we observe that the relevance criterion
has the highest correlation with the cloud segmentation ac-
curacy among all methods. Therefore we conclude that our
proposed rough set based color channel selection algorithm is
useful to rank color channels and identify suitable ones for
image segmentation. We also note that certain color channels
viz. c5 and c15 always perform best in all three benchmarking
methods. Conversely, color channels c4 and c11 rank lower
than others. Visual inspection of these color channels confirms
these findings (cf. Fig. 2).
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(c) Kullback-Leibler distance

Fig. 4: Scatter plot between average accuracy and (a) relevance (r = 0.84), (b) bimodality (r = −0.57), and (c) Kullback-
Leibler distance (r = 0.12) for all 16 color channels (cf. Table III). Our proposed approach using relevance scores achieves
the highest correlation when ranking the color channels with respect to their segmentation performance.

IV. CONCLUSIONS

Sensing the earth’s atmosphere using ground-based visible-
light images is popular because of its low cost and the high
temporal and spatial resolution of the captured images, as
compared to traditional satellite images. In this letter, we
have proposed a color channel selection algorithm based on
rough set theory. Experimental results show the efficacy of
our approach in identifying favorable color channels for image
segmentation. Our proposed approach outperforms other fea-
ture selection algorithms. Future work involves the extension
of such rough set based approaches to other applications.
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