A Feature Map Approach to Pose Estimation
Based on Quaternions

S. Winkler*, P. Wunsch and G. Hirzinger

German Aerospace Research Establishment — DLR
Institute of Robotics and System Dynamics
82230 Wessling, Germany

Abstract. This paper proposes a novel solution to the problem of pose
estimation of three-dimensional objects using feature maps. Our ap-
proach relies on quaternions as the mathematical representation of object
orientation. We introduce the rigid map, which is derived from Koho-
nen’s self-organizing feature map. Its topology is fixed and chosen in
accordance with the quaternion representation. The map is trained with
computer-generated object views such that it responds to a preprocessed
input image with one or more sets of object orientation parameters. Ex-
perimental results demonstrate that a pose estimate within the accuracy
requirements can be found in more than 90% of all cases. Our current
implementation operates at near frame rate on real input images.

1 Introduction

Determining the three-dimensional position and orientation of objects is an es-
sential sensory skill of intelligent robots, with applications such as online path or
task planning, world model update and visual servoing. However, model-based
pose estimation requires to explicitly or implicitly solve the extremely difficult
correspondence problem of relating image features to corresponding features in
the model description. The difficulty is mainly due to the large number of topo-
logically distinct aspects that arise when opaque 3-D objects are imaged by a
camera. Therefore, solutions that solve for correspondences analytically fail to
achieve the real-time performance necessary in many applications. On the other
hand, there exist efficient feature-based numerical registration or tracking algo-
rithms [4,12] that are able to iteratively refine an initial estimate of the object’s
pose to a high precision. This initial pose estimate need not be very accurate, it
must only lie within the range of convergence of the subsequent registration pro-
cedure. Typically, deviations of up to +25° in each rotational degree of freedom
and 20% of the object size in translation can be compensated for [12].

2 Feature Map Approach

As it is still very hard to determine even the approximate pose analytically in a
reasonable amount of time, a learning approach seems more appropriate. There
has been some previous work on the subject [3,5-8]. However, the approaches
reported in these papers simplify the task by either siginificantly limiting the
range of admissible object orientations, by ignoring self-occlusions, or by assum-
ing that correspondences between image and model features are known. Further-
more, none of the presented methods have been validated on real input images.

*

now with the Signal Processing Lab of the Swiss Federal Institute of Technology in
Lausanne, Switzerland

In order to make a neural network approach to pose estimation viable for
practical applications, the following requirements should be met:

— The difficult correspondence problem should be avoided. For instance, a
feature vector composed of the object’s vertices necessitates relating each of
the vertices derived from the image at hand with the corresponding vertices
in the training set.

— The network should be designed such that it can be trained on computer-
generated images, as it is awkward to provide a large set of different camera
views along with the precise orientation parameters.

These requirements favor a purely pictorial input representation that does not re-
quire sophisticated feature extraction. Such a representation also exhibits grace-
ful degradation in the presence of noise and varying illumination. The basic idea
is to systematically train a neural network with different object views such that
it responds to a pictorial input pattern with the approximate orientation pa-
rameters of the presented view. Ritter [9] uses such a representation for a pose
estimation network in order to demonstrate his local linear map architecture.
The response of the network are the object’s roll-pitch-yaw angles of rotation.
Despite the low input resolution and the small network, an average estimation
error of 5° is achieved if the range of rotation is limited to 90° about each axis.

3 Quaternion Representation of Orientation

Unfortunately, Ritter’s approach cannot be extended to wider ranges in a straight-
forward fashion [11]. For ranges greater than 90°, the network fails to self-
organize even if the number of neurons is increased, and the estimation accuracy
quickly degrades. Two major reasons have been found for this problem:

— The roll-pitch-yaw angle representation of spatial orientation exhibits a vari-
ety of discontinuities and ambiguous configurations which violate the implicit
continuity assumptions of the learning algorithm.

— A cubical network topology does not reflect global neighborhood relations
in orientation space very well, i.e. there exists no natural distance metric
between different poses.

In order to alleviate these problems, we conducted experiments with a variety of
possible representations of orientation, including orthonormal rotation matrices,
roll-pitch-yaw angles, extended spherical coordinates, and quaternions [11]. Of
these, the quaternion representation of orientation proved to be the most suit-
able. Quaternions [2] are an extension of complex numbers to four dimensions,
usually written as a + b2 + c¢j + dk. Multiplication is governed by Hamilton’s
fundamental rule 42 = j2 = k? = ijk = —1. In a more compact notation, a
quaternion can be regarded also as a combination of the scalar a and the vector
v = [b,¢,d]: g = [a,Vv], which simplifies formulas dramatically.

The set of all possible orientations fits into this algebraic structure of quater-
nions [10]: A rotation by the angle ¢ about the unit vector u can be represented
by the unit quaternion g = [cos ¢/2, usin¢/2]. Performing successive rotations
corresponds to multiplying unit quaternions.

Naturally, these unit quaternions come to lie on the unit 3-sphere in 4-space
(i.e. the surface of the unit sphere in four-dimensional space). The only ambiguity
occurs between a rotation about u by ¢ and a rotation about —u by —¢; the
corresponding quaternions are antipodes on the unit 3-sphere. This problem can
be circumvented by restricting all quaternions to one 3-hemisphere. Then the
distance d(g,, g5) between two unit quaternions (two poses) g; and g, becomes

0(gy,9-) = min {arccos(q;-q,), ™ — arccos(q;-qy) }- (1)

Thus, the maximum distance in quaternion measure is /2 or 90°.

For using the quaternion representation with the rigid map (see below), the
neurons should be distributed as uniformly as possible on the unit 3-hemisphere
in 4-space. Since good solutions to the related problem in the three-dimensional
case were obtained from regular polyhedra [11], whose vertices are distributed
uniformly on the surface of the enclosing sphere, their n-dimensional equivalents,
called regular polytopes [1], can serve the same purpose. Of the six regular poly-
topes in 4-space, we use the one with the most vertices (600) as the basis for
distributing larger numbers of points on the 3-sphere. Because antipodes repre-
sent equivalent orientations, only the points in one 3-hemisphere are considered.
Combining the above polytope with its reciprocal under this restriction leaves
360 nodes for the network used in our experiments.

4 The Rigid Map

The competitive learning approach usually employed to train feature maps de-
termines a winning node w based on the weight vector w,, that best matches
the input pattern w. The winning node and its neighbors are then adapted to
the input according to Kohonen’s neighborhood rule (see table 1). Depending
on the metric defined to compute distances between neighboring nodes, neurons
tend to get placed according to the topology of the input space. This property
is generally known as self-organization.

In the pose estimation problem, each neuron represents a point in an in-
herently three-dimensional orientation space. For a given parameterization of
rotation, the optimal network topology is known in advance. If a uniform distri-
bution of neurons this space can be determined (cf. above), self-organization of
the network is not necessary for pose estimation, and the training algorithm can
be modified such that an a-priori defined topology is preserved during training.
This leads to the concept of the rigid map [11]. The network topology is chosen
such that the neurons are uniformly distributed in rotation space. During train-
ing, the winner is not selected according to the similarity of input and weight
vectors, but based on the proximity of a neuron to the object orientation p pre-
sented with the training sample. Only the weight vectors w; of the winning node
and its neighbors are then adapted according to Kohonen’s rule. This procedure

| | Self-Organizing Map | Rigid Map |
Training input weight vector w and pose p
Training winner |[Wow — W| < ||lw; — W[Vi | 0(py,P) < 0(p;,P) Vi
Weight update Aw; = v(py,, P;,t) - A(t) - (W — wy)
Pose update | Ap, = V' (p,,, p;,t) - N (t) - (D, p;) | —
Online input weight vector w
Online winner |lWow — W[< ||lw; — W Vi

Table 1. Comparison of Self-Organizing Map and Rigid Map. § denotes the distance
metric between poses, \ is the learning rate. The neighborhood function v ensures that
the nodes are updated in proportion to their distance from the current winner w.

keeps the neuron topology fixed, hence the term rigid map. After training, i.e.
for online pose estimation, the winner w is of course determined based on the
similarity of input and weight vectors. The orientation parameters stored in the
best-matching node, p,,, then represent the response of the network. Table 1
summarizes the rules for both map types.

5 Experimental Results

As a large number of sample views may be necessary, training is done on images
that are generated automatically from CAD-like object models, rather than re-
quiring an operator to present a large set of images with ground truth to the
system. A training image is generated by projecting a 3-D wire-frame model
of the object in a random pose. Hidden lines are removed to account for self-
occlusion. The resulting image is subsampled within its bounding rectangle to
a much lower target resolution, for instance 8x8 pixels. Finally, the resulting
pattern is normalized to reduce intensity dependence (figure 1).

|

random feature
oses map
p training

wire—frame model subsampled and
normalized image

Fig. 1. Training of the feature map: Projections of a 3-D wire-frame model of the object
in random poses are subsampled and normalized to form the input to the network. The
pose information is also used directly for supervised learning.

Feature Map
Registration

segmented Sobel filtered subsampled and estimated pose exact pose
camera image camera image normalized

Fig. 2. The feature map at work: The segmented camera image is Sobel filtered, sub-
sampled and normalized. This yields the input for the feature map, which estimates
the object’s pose (shown as a wire-frame model overlay). The exact pose can then be
determined by applying a registration method to edge segments.

Figure 2 shows the application phase of the quaternion net. Note that the
network has been trained entirely with synthetically generated images. After rec-
tification of the camera image, a bounding rectangle of the object is determined
by color segmentation. In analogy to the training phase, the intensity image
within the bounding rectangle is Sobel-filtered with a 7x7 Gaussian derivative
kernel and then subsampled and normalized just like the training images. These
preprocessing steps can be implemented easily on standard image processing
hardware such as a Datacube MV200, where processing a 384x287 image takes

about 20 ms. Subsequent computation of the pose estimate by the neural net-
work takes less than a millisecond on a standard workstation. The resulting pose
can then be passed on to the registration algorithm described in [12] as an initial
pose estimate. The algorithm extracts edge segments from the raw pixel data
and refines the map’s pose estimate by iterative matching of image and model

edges. Hence, the exact pose is obtained in a fully automatic way.

In order to quantitatively compare
different pose representations and net-
work topologies, an extensive series of
simulations was conducted [11]. Fig-
ure 5 summarizes the most important
results for the quaternion map, which
was trained with 50,000 views in about
15 minutes on a standard SGI Indigo?
workstation. The plots show the er-
ror histograms generated from classi-
fying 100,000 randomly generated test
views of the tape dispenser shown in
the previous figures. That particular
object is quite demanding in terms of
pose estimation as it is non-convex with
few symmetries and exhibits curved
features (approximated with polygons
in the object model).

%

10
;’ l'. — basic quaternion map
8 N\
---- hypothesize & verify
6 | |
al
2t
0O 10 20 30 40 50 60 70 80 éO

estimation error [degrees, quaternion measure]

Fig. 3. Histograms of the network’s pose
estimation error for the tape dispenser.
The tail of the histogram is due to ob-
ject symmetries and disappears for three
hypotheses.

The maximum of the histograms at about 8° corresponds to the sampling
interval of orientation space. Ideally this should be the only maximum of the
curve, but in practice we find a “tail” near the maximum 90° of error, which
disappears when testing a small number of the network’s best pose hypotheses
and choosing the correct response (the application in mind being the hypothesize
& verify paradigm). This indicates that the major source for the error tail are
symmetries of the object that cannot be resolved from a single camera image.
Depending on the object, the orientation estimation error is less than 25° in
80% to 90% of all cases, which is already accurate enough to ensure convergence
of numerical registration methods [12]. These numbers can be improved even
further when two or three hypotheses are tested, as shown in figure 5.

The rigorous reduction of the input dimension by subsampling inevitably
leads to a tremendous loss of information. In particular, the direction of edges
within a single subsampling block is lost almost completely. In order to cir-
cumvent this problem, oriented-edge filtering was used before subsampling: The
gradient of the image was multiplied by Gaussian functions centered at the de-
sired angles, giving a set of input images, each representing image edges at a
certain orientation [11]. However, we found that this procedure yields only mi-
nor improvements. Similarly, increasing the resolution beyond 8x8 pixels only
marginally improves accuracy. On the other hand, decreasing the resolution of
the subsampled image to below 6x6 pixels leads to a significant deterioration of
estimation accuracy.

Further experiments have demonstrated the robustness of the network with
respect to typical image artifacts. Estimation accuracy degrades gracefully with
noise in both edge localization and intensity. Another typical variation with
images obtained by perspective projection is the abrupt appearance or disap-
pearance of lines (and surfaces) when the object is translated with respect to
the camera, for example, when images are recorded at varying distances. This is
one of the major problems of multi-view representations. Our experiments have

shown that a neural network trained with views taken from a fixed distance is
relatively robust to these changes of aspect [11].

Considering the significant difference in quality of the simulated training data
(the wire-frame model in figure 1) and the input computed from camera images
(the Sobel filtered image in figure 2), the network performance on real images is
surprisingly good. Varying illumination conditions represent the main problem,
because they strongly influence edge contrast. In this respect, the object model is
quite crude and could be made more realistic. To further improve performance,
training from simulated images should only be considered as a bootstrapping
phase, after which the network should be adapted online to match the illumina-
tion conditions at hand.

6 Conclusions

We have presented a feature map approach to the problem of obtaining 3-D
pose estimates from a single 2-D perspective view. Experiments have shown
that a network based on the unit quaternion representation is best suited for
pose estimation. Our rigid map’s topology is tailored to this representation of
spatial orientation. Training is done entirely on synthetic views generated from a
CAD-style 3-D object model, which makes the training phase fully automatic and
efficient. Once trained, the network can also successfully classify real images. The
online computation time is small, and frame-rate implementations with image
processors are easily feasible.

References

. H. S. M. Coxeter: Regular Polytopes. Dover, 1973.

. W. R. Hamilton: Elements of Quaternions. Chelsea, 1969.

. A. Khotanzad, J. Liou: “Recognition and pose estimation of 3-D objects from a
single 2-D perspective view by banks of neural networks.” in Proc. Artifical Neural
Networks in Engineering Conference, pp. 479-484, ASME Press, 1991.

4. D. G. Lowe: “Fitting parametrized three-dimensional models to images.” in IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 60, no. 5, pp. 441-450, May
1991.

5. M.-C. Lu, C.-H. Lo, H.-S. Don: “A neural network approach to 3-D object iden-
tification and pose estimation.” in Proc. Int. Conf. on Artificial Neural Networks,
pp. 2600-2605, 1991.

6. C. Maggioni, B. Wirtz: “A neural net approach to 3-D pose estimation.” in Proc.
Int. Conf. on Artificial Neural Networks, pp. 75-80, 1991.

7. K. Park, D. J. Cannon: “Recognition and localization of a 3-D polyhedral object
using a neural network.” in Proc. IEEE Int. Conf. on Robotics and Automation,
pp. 3613-3618, 1996.

8. T. Poggio, S. Edelman: “A network that learns to recognize three-dimensional
objects.” in Nature, vol. 343, pp. 263-266, 1991.

9. H. J. Ritter: “Learning with the self-organizing map.” in Proc. Int. Conf. on Ar-
tificial Neural Networks, pp. 379-384, 1991.

10. K. Shoemake: “Animating rotation with quaternion curves.” in Computer Graph-
ics, vol. 19, no. 3, pp. 245-254, July 1985.

11. S. Winkler: Model-Based Pose Estimation of 3-D Objects from Camera Images
Using Neural Networks. Technical Report 515-96-12, German Aerospace Research
Establishment — DLR. Master’s Thesis, TU Vienna, Austria, 1996.

12. P. Wunsch, G. Hirzinger: “Registration of CAD-models to images by iterative

inverse perspective matching.” in Proc. Int. Conf. on Pattern Recognition, pp.

78-83, 1996.

W N~

