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ABSTRACT

We propose a modified texton-based classification approach
that integrates both color and texture information for im-
proved classification results. We test our proposed method
for the task of cloud classification on SWIMCAT, a large
new database of cloud images taken with a ground-based sky
imager, with very good results. We perform an extensive eval-
uation, comparing different color components, filter banks,
and other parameters to understand their effect on classifica-
tion accuracy. Finally, we release the SWIMCAT dataset that
was created for the task of cloud categorization.

Index Terms— Cloud texture, classification, ground-
based sky imaging

1. INTRODUCTION

The analysis of clouds and study of their features is important
for many applications, including climate modeling, weather
prediction, solar energy production, satellite communication,
and others [1,2]. The manual classification of cloud cate-
gories by experts is expensive and infrequent; thus, it is nec-
essary to come up with automatic and efficient cloud classifi-
cation methods.

The World Meterological Organization (WMO) recom-
mends a genera-based classification [3], which defines how to
classify cloud patches into various categories based on their
shape, structure, transparency, arrangement inside the cloud,
texture, color, and height of their base. For example, cuamulus
clouds are puffy in shape and are regularly patterned; stratus
clouds are mostly featureless, and are characterized by their
transparent, whitish veil appearance; nimbostratus clouds are
rain clouds, having thick dark appearance; and so on.

We have proposed a method for three-level labeling of
pixels in sky/cloud images [4]. Some of the earlier methods
in cloud type recognition use co-occurrence and autocorre-
lation matrices [5] or Fourier transform [6] to classify pre-
defined sky/cloud conditions. Heinle et al. [7] extract sev-
eral statistical features from pre-defined sky conditions and
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use k-nearest neighbor classifier during the classification step.
Liu et al. [8] proposed an illumination-invariant completed
local ternary pattern (ICLTP) descriptor for cloud classifica-
tion tasks. However, most of these approaches consist of sev-
eral pre-processing stages and use various pre-defined fixed
thresholds in extracting the image features. As the various
cloud genera are identified and distinguished amongst them-
selves primarily by their distinctive color and texture, it is im-
portant to seamlessly integrate both these information in the
classification framework.

In this paper, we propose a cloud categorization tech-
nique to classify various sky/cloud patches. Adapting Varma
and Zisserman’s textons [9], our proposed approach ably inte-
grates both color and texture information to solve the problem
of cloud categorization. Extensive experiments on a large-
scale database show that it achieves very good classification
accuracy.

2. PROPOSED CLASSIFICATION METHOD

The proposed classification approach presented here is based
on the original texton-based texture classification introduced
by Varma and Zisserman [9]. The primary differences be-
tween our proposed approach and original texton based ap-
proach are mainly twofold.

First, the conventional manner consists in generating tex-
tons from each of the individual categories, and subsequently
creating the texton dictionary. This however may not be an
appropriate choice in cases where differences in color and
texture of images across different categories are subtle. In
our proposed approach, we generate the filter responses of
images across all the categories and aggregate them together.
Using k-means clustering on the concatenated filter response,
we generate the different k-means cluster centers. These clus-
ters centers are the modified-textons; and they constitute the
texton dictionary. This method helps exploit the redundancy
of information both across and within categories.

Second, the original texton-based classification technique
is based on gray-scale images. A few variants for color im-
ages have been proposed in the literature. Sun and He [10]



combined the filter response and RGB color information to
form a composite feature vector. Burghouts and Geusebroek
[11] used color as a post-processing step on the standard gray-
scale texton approach. In this paper, we rely on a methodical
choice of color channel that is most suitable for cloud detec-
tion [12], and use that as input to the generation of image
descriptors.

2.1. Image Descriptor Generation

Assuming there are p categories, and each category has ¢
training images X; € R™*", i = 1,2,...,q, having a di-
mension m X n. The individual images X; are convolved
with a set of filters from filter bank F1, Fs, ... Fy, for every
pixel location (z, y) to obtain Y;, where Y; € IR™*"**;

Y= F1*X(z,9),...,Fr* X(z,9))}

The filter response Y; is reshaped to form S?i where Yi S
IR* ™" These individual filter responses are concatenated
together for all the pq training images in the dataset across all
the categories to form Yo € IRF*™nP4,

We primarily use S-filters [13], which are a popular choice
for texton-based classification tasks, and tune the filter set to
our specific task (see Section 4.2 below). S-Filters are es-
sentially rotation-invariant Gabor-like filters that capture fre-
quency and scale with a sinusoidal waveform attenuated by a
Gaussian.

Finally, textons are generated from Y A using the conven-
tional k-means clustering algorithm. The cluster centers gen-
erated contribute to the modified-texton dictionary.

2.2. Discriminative Model

The discriminative histogram model for each category is gen-
erated by comparing the filter responses of the pixels with
the generated textons in the dictionary. The particular texton
from the dictionary having the smallest 2D-Euclidean norm
with the pixel’s filter response is mapped to the pixel. For
each category j = 1,2, ..., p, atotal of ¢ histograms are gen-
erated that describe the frequency of occurrence of particular
textons in that particular category. These histograms are then

averaged to determine the discriminative histogram models
hmodel
; .

2.3. Classification Metric

In the testing stage, the corresponding histogram is generated
for a test image. The test histogram 7" is compared bin-by-
bin (k) with each of the model histograms h}mdel using x?
statistics:
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which measures how unlikely it is that one distribution is
drawn from the other. The class with the lowest x2 distances
to the test image is considered as the categorized class for the
test image. As the number of histogram bins in training and
test images are kept fixed, there are no demerits in using such
x? distance bin-by-bin dissimilarity measure.

3. SWIMCAT DATABASE

While there has been extensive work on sky/cloud images im-
age analysis captured by ground-based cameras by a number
of research groups around the world, public benchmarking
databases in this domain are rare. Currently, the only avail-
able database is HYTA [14], which contains sky/cloud images
along with their segmentation masks. However, there are no
existing databases for cloud classification. We therefore cre-
ated our own database for this purpose, which we call SWIM-
CAT (Singapore Whole-sky IMaging CATegories database).

SWIMCAT contains images captured using WAHRSIS,
a calibrated ground-based whole sky imager, which was de-
signed by us [15]. We selected a total of 784 patches com-
prising 5 cloud categories from images that were captured in
Singapore over the period January 2013 to May 2014. The
5 categories of clear sky, patterned clouds, thick dark clouds,
thick white clouds, and veil clouds are defined based on vi-
sual features of sky/cloud conditions, in consultation with ex-
perts from the Singapore Meteorological Services. All image
patches are of dimension 125 x 125 pixels. A representative
image from each category is shown in Fig. 1.

The SWIMCAT database is available for download from
http://vintage.winklerbros.net/swimcat.html.
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Fig. 1: (a) Clear sky (b) Patterned clouds (c) Thick dark
clouds (d) Thick white clouds (e) Veil clouds

4. EXPERIMENTAL EVALUATION & RESULTS

We evaluate our modified texton-based approach described in
Section 2 on the SWIMCAT database. The different images
of the database are divided into two disjoint sets for training
and testing. For training, a total of 40 images per category
are chosen. The testing set for each category consists of 45
randomly selected images from the remaining ones. In order
to understand the effects of different parameters on the final
classification result, we perform extensive evaluations on our
database.



Patterned Thick Thi.Ck Veil
Sky Clouds Dark ‘White Clouds Average Pracro Rmacro Priicro Ricro
Clouds Clouds
z S 0.96 1.00 0.82 0.93 0.82 0.91 0.91 0.91 0.87 0.84
= R/B 1.00 1.00 0.98 1.00 0.69 0.93 0.94 0.93 1.00 0.75
= R—-B 0.93 1.00 0.09 1.00 0.91 0.79 0.79 0.79 0.92 0.89
5 gi;g 0.76 0.98 0.38 1.00 0.60 0.74 0.78 0.74 0.97 0.65
S C 0.91 1.00 0.38 1.00 0.91 0.84 0.87 0.84 0.95 0.90
Set 1 1.00 1.00 0.49 0.78 0.89 0.83 0.86 0.83 0.86 0.88
§ Set 2 0.98 1.00 0.60 0.78 0.89 0.85 0.87 0.85 0.88 0.88
5 Set 3 1.00 1.00 0.93 1.00 0.70 0.92 0.93 0.92 0.96 0.76
5 Set 4 1.00 1.00 0.53 0.78 0.89 0.84 0.86 0.84 0.88 0.88
Set 5 0.98 1.00 0.47 0.78 0.89 0.82 0.85 0.82 0.86 0.88
19 x 19 0.98 0.93 0.47 0.78 0.91 0.81 0.85 0.81 0.95 0.90
_ 29%x29 1.00 0.78 0.51 0.78 0.67 0.75 0.78 0.75 0.79 0.69
S 39x39 1.00 0.98 0.38 0.76 0.82 0.79 0.83 0.79 0.97 0.82
£ 49 x49 1.00 1.00 0.97 1.00 0.68 0.93 0.94 0.93 0.97 0.75
g 59 x 59 0.98 1.00 0.64 0.76 0.89 0.85 0.87 0.85 0.91 0.89
S 69 %69 0.98 0.84 0.64 0.58 0.87 0.78 0.79 0.78 0.69 0.85
Z 79x79 0.98 0.71 0.58 0.51 0.84 0.72 0.75 0.72 0.59 0.82
89 x 89 0.98 0.71 0.69 0.47 0.87 0.74 0.76 0.74 0.57 0.85
99 x 99 1.00 0.69 0.58 0.24 0.87 0.68 0.68 0.68 0.52 0.84
10 1.00 0.44 0.78 0.76 0.47 0.69 0.69 0.69 0.53 0.56
20 0.98 0.98 0.42 0.8 0.82 0.80 0.84 0.80 0.95 0.82
£ 30 1.00 1.00 0.97 1.00 0.68 0.93 0.94 0.93 1.00 0.75
2 40 1.00 1.00 0.62 0.78 0.91 0.86 0.87 0.86 0.91 0.91
2 50 1.00 1.00 0.56 0.80 0.91 0.85 0.87 0.85 0.93 0.91
e 60 0.98 1.00 0.58 0.82 0.89 0.85 0.88 0.85 0.91 0.89
é 70 0.98 1.00 0.56 0.82 0.89 0.85 0.87 0.85 0.91 0.88
! 80 0.98 1.00 0.60 0.80 0.89 0.85 0.87 0.85 0.93 0.89
z 90 0.98 1.00 0.58 0.82 0.89 0.85 0.87 0.85 0.93 0.89
100 0.98 1.00 0.60 0.82 0.91 0.86 0.88 0.86 0.93 091

Table 1: Performance evaluation of sky/cloud recognition rates for different color channels, filter sets, filter dimensions, and
number of textons. The best performing parameters are highlighted.

For an objective evaluation of this multi-class classifica-
tion task, we evaluate the individual classification accuracy
for each of the 5 categories. We also report the average classi-
fication accuracy, macro- and micro-precision and -recall val-
ues [16]. Macro-precision and -recall are calculated by aver-
aging the precision and recall values across individual classes,
whereas micro-precision and -recall are calculated by aggre-
gating the individual true positives, false positives, and false
negatives of the system for different categories. In a multi-
class classification task, macro-values give an indication of
system performance across all the categories, whereas micro-
values quantify the performance of per-image classification.

4.1. Color Channel

Based on the results of an earlier analysis of color channels
we conducted for cloud detection [12], we check the perfor-
mance of Saturation (S) channel of the HSV color space, var-
ious common red-blue combinations (R/B, R — B, g—jrg),
and chroma C' = max(R, G, B) — min(R, G, B). All other
parameters are kept fixed (Filter set 3, dimension 49 x 49, 30
textons). From Table 1, it is observed that most of the color

channels work well for sky, patterned clouds and thick white

clouds because of their distinctive texture and color. Thick
dark clouds have a low saturation component and are there-
fore correctly classified by color channel S and R/B. The
best performing color channel R/B is selected for our final
classification task.

4.2. Filter Set

For our experiments, we use different sets of S-filters that aim
to capture the majority of frequency components, and subse-
quently choose the most suitable filter set. Table 2 shows the
(o,7) pairs for various scenarios. The individual filters are
L;-normalized before convolution with the input images.

Table 1 shows the effect of different filter sets (o,7) on the
final results. The other parameters are kept constant (Color
channel R/B, Filter dimension 49 x 49, 30 textons). The
DC component in the filter set is required to capture the low
frequencies of the image. An absence of the DC component
particularly affects the performance for thick dark clouds, as
such images contain pre-dominantly low frequency compo-
nents. The optimal filter Set 3 corresponds to a scenario that
contains DC component and higher values of both o and 7.
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Table 2: (o,7) values for different sets. Set 1 represents the
original S-Filter set.

4.3. Filter Dimension

As the SWIMCAT database consists of images with fixed di-
mension 125 x 125, the optimum filter size needs to be tuned
accordingly. As before, we keep the other parameters fixed
(Color channel R/ B, Filter set 3, 30 textons). From Table
1, we see that the average classification accuracy across dif-
ferent categories is poor for small filter sizes, as they fail to
capture the predominant essence of the cloud textures. Also,
at large filter size, the boundary effects reduce accuracy. The
best performance is achieved with an intermediate filter size
of 49 x 49 pixels, which is thus a good choice for the final
classification task.

4.4. Number of Textons

Table 1 shows the effect of the number of textons on the clas-
sification performance. The other parameters are kept fixed
(Color channel R/ B, Filter Set 3, dimension 49 x 49). The
results are poor when the number of textons is small. How-
ever, beyond 30 textons, there is no significant performance
gain in the classification accuracy. Thus, we select the num-
ber of textons as 30 to avoid overfitting.

4.5. Classification Results

Using the parameters selected in the above Sections, we con-
duct an evaluation of cloud classification on the SWIMCAT
database: we use R/B color channel, filter set 3, with filter
dimension 49 x 49 and 30 textons.

The confusion matrix obtained is shown in Fig. 2; each
column of the matrix represents the instances in a predicted
class, and each row represents the instances in the actual
class. Our proposed classification approach achieves near-
perfect classification accuracy for most categories. Veil

clouds present a challenge because of their resemblance
to clear sky. Furthermore, in R/B color representation, veil
clouds can be similar in appearance to thick dark clouds and
are sometimes mis-classified as such.

Patterned Clouds -

Thick Dark Clouds -

Actual classes

Thick White Clouds -

Veil Cloudsr  0.09

Sky Patterned  Thick Dark  Thick White Veil
Predicted classes

Fig. 2: Confusion matrix using our proposed approach.

Table 3 benchmarks our proposed approach against the
original texton approach [9] with Leung-Malik (LM), Schmid
(S), or Maximum Response (MR) filters, again using the
SWIMCAT database. Amongst the three sets, S-filters are
still the best, but the performance of the original texton ap-
proach remains far below our proposed method.

Method AVeI‘age Pmac'ro Rmacro Pmicro Rmicro

Proposed approach| 0.95 0.95 095 098 0.81
Original texton [9]
- with LM filter| 0.72 0.67 0.72 0.62 0.64
- with S filter| 0.79 0.78 0.79 0.83 0.73
- with MR filter| 0.71 0.67 0.71 0.66  0.57

Table 3: Benchmarking results for cloud categorization.

5. CONCLUSION

This paper describes a new texton-based classification method
that effectively combines color and texture information for
multi-class classification of sky/cloud image patches. The in-
herent structure of the input data is exploited to determine the
appropriate color representation for the task. Furthermore,
we introduce SWIMCAT, a large database of ground-based
sky/cloud images annotated with cloud categories, which we
release to the research community. Extensive experiments are
performed using this database; the results show the efficacy
of our proposed cloud classification approach.
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