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ABSTRACT

We propose a frontalization technique for 2D facial land-
marks, designed to aid in the analysis of facial expressions.
It employs a new normalization strategy aiming to minimize
identity variations, by displacing groups of facial landmarks
to standardized locations. The technique operates directly on
2D landmark coordinates, does not require additional feature
extraction and as such is computationally light. It achieves
considerable improvement over a reference approach, jus-
tifying its use as an efficient preprocessing step for facial
expression analysis based on geometric features.

1. INTRODUCTION

Facial Expression Analysis (FEA) has attracted strong atten-
tion in recent years, both in the research community [[1] as
well as in real-world systems and applications [2]]. However,
faces are some of the most challenging objects to register.
First, faces can exhibit a broad range of deformations which
may significantly alter their shape and appearance, especially
for high intensity expressions. Second, there is significant
variability across individuals, resulting in considerable dif-
ferences in appearance. This identity variability may further
be accentuated by age, gender and race. Finally, perhaps the
most important factor is the variability of faces across differ-
ent viewpoints. As such, different head poses may result in
dramatically different face appearance. Therefore, FEA sys-
tems operating in uncontrolled conditions have to address the
head pose variability issue across different identities and ex-
pressions. Frontalization approaches offer a solution to this
problem by recovering the frontal view of non-frontal facial
images [3H6]. As such, training may take place on ‘frontal’
datasets, while during inference frontalization ensures that fa-
cial images are transformed to frontal before any analysis.
Frontalization can be classified into appearance-based
and landmark-based approaches. Appearance-based frontal-
ization attempts to recover the full frontal appearance of the
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face. Usually this is achieved by fitting a 3D model on the
non-frontal face, projecting pixels on the fitted model and
rotating it back to frontal using texture warping [3H5](7].
Recently, Generative Adversarial Networks (GANs) have
been successfully used to reconstruct the frontal view of non-
frontal faces [[8-10]. Landmark-based frontalization focuses
on estimating only the location of facial landmarks as they
would have looked from the front [6]; no pixel appearance is
estimated. As such, these approaches tend to be considerably
less computationally expensive, since they do not require
pixel rendering or generative networks. In recent years, di-
rectly estimating 3D facial landmarks from 2D images has
become possible [[11-14], simplifying the estimation of the
frontal landmark view. However, these methods are still
computationally expensive and not as widely used in FEA
systems. In many real-world scenarios, computationally light
FEA systems are required, e.g. for real-time execution in edge
devices. In such cases, generative networks and expensive
3D reconstruction methods are usually not an option. Instead,
FEA systems solely based on geometric features (derived
from facial landmarks) are a better choice. Even though ap-
pearance is not used in this approach, it has been shown to
exhibit competitive performance [/15].

In this paper we follow the latter approach. More specifi-
cally, we focus on the frontalization of faces for FEA, aiming
to discount two of the three major sources of facial variabil-
ity (identity and viewpoint), while preserving the third (de-
formations a.k.a. expressions). We also focus on a compu-
tationally light approach that allows for real-time landmark
frontalization. To this end, we introduce a new fast facial
landmark frontalization method that compensates for view-
point and identity variations in FEA tasksm The technique is
data-driven and operates directly on the 2D landmark coordi-
nates without the need for additional feature extraction. Once
trained, it requires minimal overhead, since computation is
reduced to a simple matrix multiplication. Furthermore, we
introduce a new landmark normalization strategy, which min-
imizes identity variations by displacing facial parts to stan-

1 A sample Python implementation of the method is available at
https://github.com/bbonik/facial-landmark-frontalization
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dardized locations. This standardization further improves the
performance of the proposed method. Experimental results
demonstrate that our technique exhibits superior performance
in comparison to an existing reference approach. As such,
it is suitable as an efficient preprocessing step in landmark-
based FEA systems, offering increased robustness to non-
frontal headposes.

2. 2D LANDMARK FRONTALIZATION

Let * pf € R?"N be a vector containing the estimated 2 and y
coordinates of N facial landmarks from subject ¢ with facial
expression j € {1,---,J} from viewpoint k € {0,---, K}.
Let “p? denote the frontal view of the 4t expression of sub-
ject 4. Matrix A contains the transposed version of all land-
mark coordinate vectors kpg , while Y is the ‘ground truth’
of their corresponding frontal view coordinates Opg. With
this, the required frontalization mapping X can be expressed
through the following optimization:

argming ||Y — AX]|, + A || X]|,, (1
which can be solved for X in closed-form:
X=(ATA+A) 'ATY, ©)

where ) is the regularization term, and X € REN+1)x(2N)
represents the least-squares approximate solution, containing
the frontalization weights for the mapping. It is important that
matrices A and Y are filled in such a way that the landmark
coordinates of every given non-frontal expression of a subject
are mapped to the landmark coordinates of the corresponding
frontal expression of the same subject. In the following exam-
ple, single horizontal lines represent the transition to another
expression of the same subject, while double horizontal lines
represent the transition to a different subject.
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In order to train and evaluate the frontalization module,
5 different datasets listed in Table |I| are employed. These
datasets contain portrait images of different people with vary-
ing facial expressions from multiple viewpoints. All available
images from the 5 datasets were scanned using OpenCV’s
frontal and profile face detectors. All valid detected faces
were analyzed using Supervised Descent Method (SDM) [16]
in order to estimate the 2D facial landmarks. The total num-
ber of valid detected faces was 86,844, which were doubled to
173,688 after mirroring. Each set of raw coordinates was sep-
arately normalized for scaling, translation and rotation (see
Section , before filling the A and Y matrices and esti-
mating the frontalization weights X.

Table 1. Datasets used for training (top 4 rows) and testing
(bottom row).

Dataset Pitch Yaw
Radboud [17]] - 0°, +45°, +90°
Karolinska [[18]] - 0°, £45°, £90°
CAS-PEAL [19] #£15° 0°, £22°, +45°, £67°, +90°
PIE [20] =£15° 0°, £22°, +45°, £67°, +90°
Multi-PIE [21] —30° 0%, +15%, +30°, 4457,

£60°, £75°, £90°

The computational overhead introduced by the proposed
frontalization approach at runtime is minimal, since for N
facial landmarks, this equates to a single vector-matrix multi-
plication between the landmark coordinate vector p € R?V+1
(2N landmark coordinates plus the intercept) and the frontal-
ization matrix X € RN +1)x(2N),

2.1. Normalization of Landmarks

Let PY € RV*2 be a matrix containing the = and y coor-
dinates of N facial landmarks of facial image ¢. In order to
properly learn the frontalization matrix X, all coordinates in
matrices A and Y should be appropriately standardized for
translation, scaling and rotation. For this, we employ a non-
isotropic version of the Procrustes transformation.

Letn C N represent a subset of “stable” facial landmarks
that change minimally with different expressions. These in-
clude facial points on the eyes, the nose, and the middle of
the upper lip. Eyebrows and the majority of the mouth are ex-
cluded, since their coordinates may change significantly with
different expressions, thus, introducing additional variations
that may affect scale. In our case, N = 49 and n = 13. Let
P? € R™*?2 represent the coordinate matrix of the n stable
points. Then the standardized coordinate vector P is esti-
mated as:

. P — "P7 _



where *P? € R"*? denotes a matrix containing the mean
values of the columns of P}, replicated for = rows. |||

represents the Frobenius norm, while R; € R2*2 ig the fol-
lowing rotation matrix:

fsin(a) TeyeR — TeyeL
:l ,a = atan (

Sin(a) COS(G’) YeyeR — YeyeL

cos(a

R [ (a)

with Z¢ye, Yeye denoting the coordinates of the centers of the
left and right eyes in image .

Equation (@) has 3 distinct terms, standardizing scaling,
translation, and rotation, respectively. The scaling factor is
essentially the average Euclidean distance of the stable land-
marks to their corresponding mean. The fact that only the
mean values of the stable points n are used for the calculation
of the scaling and translation factors adds robustness to dif-
ferent facial expressions. Conversely, if all the N landmarks
were used, then various facial expressions would affect the
scale and the translation of the standardized landmark coor-
dinates. This approach is also more robust to yaw changes,
compared to the widely used intra-ocular (eye-to-eye) dis-
tance, since in non-frontal faces, the eye-to-eye distance be-
comes smaller, and thus, normalizing by it affects the scaling
term.

2.2. Identity Standardization

Although the above standardization approach eliminates vari-
abilities related to scale, translation and rotation, a person’s
identity may still introduce unnecessary variations that can
affect the frontalization performance. This is due to the fact
that every person has different relative positions of landmark
groups, e.g. distance between the eyes, distance of the upper
mouth to the bottom of the nose, upper starting point of the
nose etc. During our experiments we found that eliminating
this type of identity variability further improves the perfor-
mance of the frontalization module.

To this end, we introduce additional translation terms only
to the frontal ground truth coordinates of matrix Y. These
translation terms displace whole groups of facial landmarks,
such as eyes, mouth and nose, and re-position them in the cor-
responding group locations of a template face. By doing this,
we force the optimization to learn a more identity-invariant
frontalization transformation, from non-frontal landmarks to-
wards a standardized frontal face, discounting individual face
variabilities.

Let {€r,Er, M,N'} C N represent subsets of facial
landmarks, corresponding to the left and right eye, the mouth
and the nose, respectively. Let PfL, PfR, P{V‘, P{v represent
the landmark coordinates of the corresponding subsets for
facial image ¢, and PEL, P?R, P:/}/‘, PJ}/ the landmark coor-
dinates for the template face. Then the identity-standardized
frontal coordinates f’;’” of matrix Y are given by the following
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Fig. 1. Per landmark average normalized errors (not showing
x1072) and total average normalized errors (bottom, square
brackets) of different frontalization approaches. Normalized
errors are unitless.

equations:

P? = P? + AP?, (5)

K2

AP? = Py — P?

with 2 € {€,Er, M, N'} and P representing an anchor
point in the landmarks of subset z. For subsets &1, Er and
N, the anchor point used was the mean of their standard-
ized coordinates f’f. For M, the upper middle landmark was
used as anchor point, since different mouth deformations can
affect its coordinate mean considerably, introducing fluctua-
tions. Matrix Af’f adds a displacement in the standardized
coordinates, such that the different landmark subsets are al-
ways located in the same location as in the template face 7'. In
our experiments, the mean frontal face of the training datasets
was used as template face.

The displacement term does not affect the shape of the
landmark subsets, but only their relative position within the
face. For example, a smiling mouth will maintain its shape,
and only its position within the face will change. Unlike all
other facial parts, eyebrows are omitted from the identity stan-
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Fig. 2. Example outputs of the frontalization module on unseen non-frontal images of various head poses and expressions. Top:
Original landmarks and head pose estimated by SDM. Bottom: Output of the proposed frontalization module.

dardization, because their relative position conveys important
expression information; e.g. in a surprised expression, eye-
brows tend to move up away from the eyes. As such, stan-
dardizing their relative position would discount this important
information for FEA.

The proposed identity standardization takes place only
once, during training of the frontalization module. At run-
time, all facial landmarks are standardized only for scale,
rotation and translation, using Equation (4)), while the frontal-
ization module will estimate their frontal view, suppressing
individual identity differences and maintaining the expres-
sion.

3. EXPERIMENTAL RESULTS

In order to quantitatively evaluate the performance of the pro-
posed frontalization approach, a frontalization module was
trained using 4 out of the 5 datasets of Table E] (Radboud,
Karolinska, CAS-PEAL, PIE) and tested on the holdout
dataset (Multi-PIE). The normalized least square residual
AR o
performance, which is the same metric used in face align-
ment [[16]. f(*p]) represents the frontalized view of the
non-frontal landmarks kpg , Opg denotes its actual ground
truth frontal landmarks, provided by the test set, while their
ratio is a unitless number.

Fig. (1| depicts the frontalization errors of two versions of
the proposed method (with and without identity standardiza-
tion), as well as that of a PCA-based approach [6] Our pro-
posed approach exhibits considerably smaller errors than the
PCA-based approach (roughly by a factor of two). Addition-
ally, identity standardization further reduces the error across

was used to measure frontalization

2 According to [6], the first principal components with the largest capac-
ity to explain variance are associated with yaw and pitch. Consequently, if
discarded during reconstruction, yaw and pitch are discounted and thus the
landmarks are frontalized.

all landmarks, resulting in a more robust frontalization.

Fig. 2] depicts example outputs of the final frontalization
approach (trained with all 5 datasets of Table |I)) on unseen
images captured by a web camera. Based on our qualitative
tests, the frontalization module is quite robust to yaw ranges
within £45° and pitch ranges within £15°. Beyond those
ranges, performance drops, but still remains reasonable for
yaw ranges in £[45°, 60°] and pitch ranges in £[15°,30°]. It
was not possible to test the performance above £60° for yaw
or £30° for pitch, since this is beyond the operating range
of the face and landmark detectors; faces with more extreme
head poses would either yield unreliable facial landmarks or
would not be detected at all.

We also observe that there is an imbalance in performance
between yaw and pitch. This could be due to two possible rea-
sons. First, the datasets that we used had considerably fewer
training examples for pitch variations compared to yaw. Sec-
ond, yaw frontalization is inherently easier compared to pitch,
since the natural left-right symmetry of the face helps with it.

4. CONCLUSIONS

We presented a new technique for frontalizing 2D facial land-
marks, which is designed for facial expression analysis. Our
approach employs a new point normalization strategy that
aims to minimize identity variations and shifts different facial
parts to standard locations. The technique operates directly
on 2D landmark coordinates and does not require additional
feature extraction. As such, it adds minimal computational
overhead making it suitable for real-time systems. Bench-
marking with several face datasets shows that it outperforms
a PCA-based reference approach by a substantial margin,
approximately halving average errors.
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